Перейти к содержанию

Параллелепипед

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Параллелепипед

Параллелепи́пед (др.-греч. παραλληλ-επίπεδον[1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — четырёхугольная призма, все грани которой являются параллелограммами.

Типы параллелепипеда

Прямоугольный параллелепипед

Различается несколько типов параллелепипедов:

  • Наклонный — боковые грани не перпендикулярны основанию.
  • Прямой — боковые грани перпендикулярны основанию.
  • Прямоугольный — все грани являются прямоугольниками.
  • Ромбоэдр — все грани являются равными ромбами.
  • Куб — все грани являются квадратами.

Основные элементы

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы

Прямой параллелепипед

Площадь боковой поверхности Sбо*h, где Ро — периметр основания, h — высота

Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания

Объём V=Sо*h

Прямоугольный параллелепипед

Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности Sп=2(ab+bc+ac)

Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб

Площадь поверхности: [math]\displaystyle{ S=6a^2 }[/math]
Объём: [math]\displaystyle{ V=a^3 }[/math], где [math]\displaystyle{ a }[/math] — ребро куба.

Произвольный параллелепипед

Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]:215.

В математическом анализе

В математическом анализе под n-мерным прямоугольным параллелепипедом [math]\displaystyle{ B }[/math] понимают множество точек [math]\displaystyle{ x = (x_1,\ldots,x_n) }[/math] вида [math]\displaystyle{ B = \{x|a_1\leqslant x_1\leqslant b_1,\ldots,a_n\leqslant x_n\leqslant b_n\} }[/math]

Сечение параллелепипеда плоскостью

В зависимости от расположения секущей плоскости и параллелепипеда сечение параллелепипеда может быть треугольником, четырехугольником, пятиугольником и шестиугольником.

Примечания

  1. Древнегреческо-русский словарь Дворецкого «παραλληλεπίπεδον»
  2. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Ссылки