Перейти к содержанию

Четырёхскатный купол

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Четырёхскатный купол
Четырёхскатный куполЧетырёхскатный купол
Тип Многогранник Джонсона J3 - J4 - J5
Свойства выпуклый
Комбинаторика
Элементы
20 рёбер
12 вершин
Грани 4 треугольников,<1 + 4 квадратов
1 восьмиугольник
Конфигурация вершины 8(3.4.8)
4(3.43)
Классификация
Группа симметрии C4v, [4], (*44)
Группа вращения C4, [4]+, (44)

Четырёхска́тный ку́пол — один из многогранников Джонсона (J4 = (по Залгаллеру) М5). Его можно получить как срез ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является восьмиугольник.

Многогранник Джонсона — один из 92 строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным (то есть он не правильный, не архимедов, не призма или антипризма). Название многограннику дал Норман Джонсон, который первым перечислил эти многогранники в 1966 году[1].

Формулы

Следующие формулы для объёма, площади поверхности и радиуса описанной сферы могут быть использованы, если все грани являются правильными многоугольниками со сторонами a[2]:

[math]\displaystyle{ V=(1+\frac{2\sqrt{2}}{3})a^3\approx1.94281...a^3 }[/math]

[math]\displaystyle{ A=(7+2\sqrt{2}+\sqrt{3})a^2\approx11.5605...a^2 }[/math]

[math]\displaystyle{ C=(\frac{1}{2}\sqrt{5+2\sqrt{2}})a\approx1.39897...a }[/math]

Связанные многогранники и соты

Другие выпуклые куполы

Шаблон:Купола

Двойственный многогранник

Двойственный многогранник для четырёхскатного купола имеет 8 треугольных и 4 дельтоидных граней:

Двойственный многогранник
для четырёхскатного купола
Развёртка двойственного
многогранника

Скрещенный квадратный купол

Скрещенный квадратный купол[англ.]

Скрещённый квадратный купол[англ.] — один из невыпуклых изоморфов многогранника Джонсона, который топологически идентичен выпуклому четырёхскатному куполу. Он может быть получен как срез невыпуклого большого ромбокубооктаэдра[англ.] или квазиромбокубооктаэдра, что аналогично получению купола как среза ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является октаграмма.

Соты

Четырёхскатный купол является компонентой некоторых неоднородных заполняющих пространство рёшёток:

Примечания

  1. Johnson, Norman W. . Convex polyhedra with regular faces // Canadian Journal of Mathematics, 1966, 18 (англ.). — P. 169—200. — doi:10.4153/cjm-1966-021-8.
  2. Stephen Wolfram, «Square cupola», Wolfram Alpha. От 20 июля, 2010.
  3. J4 honeycomb

Ссылки