Бра и кет
⟨ | ∣ | ⟩ |
bra | ket | |
бра | кет | |
ско | бка |
Бра и кет (англ. bra-ket < bracket скобка) — алгебраический формализм (система обозначений), предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима (хотя и не так часто используется) в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алегбре над комплексными числами.
Определение и использование
В квантовой механике состояние системы описывается лучом в сепарабельном гильбертовом пространстве, или, что эквивалентно, элементом проективного гильбертового пространства
Каждому кет-вектору
Бра-вектор
Допуская некоторую вольность речи, иногда говорят, что бра-векторы «совпадают» с соответствующими им комплексно-сопряжёнными кет-векторами. При этом обычно происходит отождествление векторов и функционалов над векторами со столбцами или строками координат разложения их по соответствующему базису
Скалярное произведение бра-вектора с кет-вектором (а точнее, действие бра-вектора на кет-вектор) записывается в виде
Линейные операторы
Если
Для каждого оператора
для любого вектора
Так как положение скобок не имеет значения, их обычно опускают и пишут просто
Это выражение называется свёрткой оператора
В частности, матричный элемент оператора
Умножение векторов на оператор (кет-вектора — слева, бра-вектора — справа) даёт векторы того же типа и записывается тем же способом, что принят в линейной алгебре (то есть в том случае, если бра- и кет-векторы отождествляются с векторами-строками и столбцами, а операторы — с квадратными матрицами):
Уравнение Шрёдингера (для стационарного состояния) будет иметь вид:
где — гамильтониан, а — скаляр (уровень энергии).
Отличия бра-кет-обозначений от традиционных
В математике употребляется обозначение «эрмитового» скалярного произведения
С другой стороны, произведение бра и кет является билинейным, но от двух аргументов разного типа. Сопряжённым к кет-вектору
Кроме того, использование бра и кет позволяет подчеркнуть отличие состояния
В отличие от алгебраических обозначений, где элементы базиса обозначаются как
Математические свойства
Бра и кет можно использовать и в чистой математике для обозначения элементов сопряжённых друг другу линейных пространств.
Если, например,
Перемножение бра- и кет-векторов друг на друга и на операторы можно рассматривать как частный случай матричного формализма «строка на столбец». А именно, надо положить кет-векторы матрицами размера
Формула для сопряжённого вектора выглядит следующим образом:
где |
Запись типа
Имеет место ассоциативность:
и т. д.
Литература
- Белоусов Ю. М. Курс квантовой механики. Нерелятивистская теория. — М.: МФТИ, 2006. — 408 с.
- Давыдов А. С. Квантовая механика. — М.: Наука, 1973. — 704 с.
- Дирак П. А. М. Принципы квантовой механики. — М.: Наука, 1979. — 440 с.
- Мессиа А. Квантовая механика. — М.: Наука, 1978. — Т. 1. — 478 с.
- Шпольский Э. В. Атомная физика. — М.: Наука, 1974. — Т. 2. — 448 с.
- Ярив А. Введение в теорию и приложения квантовой механики. — М.: Мир, 1984. — 360 с.