Перейти к содержанию

Бра и кет

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
bra ket
бра кет
ско бка
Квантовая механика

Бра и кет (англ. bra-ket < bracket скобка) — алгебраический формализм (система обозначений), предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима (хотя и не так часто используется) в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алегбре над комплексными числами.

Определение и использование

В квантовой механике состояние системы описывается лучом в сепарабельном гильбертовом пространстве, или, что эквивалентно, элементом проективного гильбертового пространства H, элементы которого называются «векторы состояния» («кет-векторы») и обозначаются символом |ψ.

Каждому кет-вектору |ψ ставится в соответствие бра-вектор из пространства, сопряжённого к H, то есть из H.

Бра-вектор ψ| из пространства H определяется соотношением:

ψ|:HC:ψ|(|ρ)=(|ψ,|ρ), для любого кет-вектора |ρ.

Допуская некоторую вольность речи, иногда говорят, что бра-векторы «совпадают» с соответствующими им комплексно-сопряжёнными кет-векторами. При этом обычно происходит отождествление векторов и функционалов над векторами со столбцами или строками координат разложения их по соответствующему базису H или H.

Скалярное произведение бра-вектора с кет-вектором (а точнее, действие бра-вектора на кет-вектор) записывается в виде φ|ψ; две вертикальные черты «сливаются», а скобки опускаются. Квадрат вектора, по определению гильбертова пространства, неотрицателен: ψ|ψ0. На векторы, описывающие состояния системы, когда это возможно, накладывается условие нормировки ψ|ψ=1.

Линейные операторы

Если A:HH — линейный оператор из H в H, то действие оператора A на кет-вектор |ψ записывается как A|ψ.

Для каждого оператора A и бра-вектора φ| вводится функционал (φ|A) из пространства H, то есть бра-вектор, умноженный на оператор A, который определяется равенством:

(φ|A)|ψ=φ|(A|ψ), для любого вектора |ψ.

Так как положение скобок не имеет значения, их обычно опускают и пишут просто φ|A|ψ.

Это выражение называется свёрткой оператора A с бра-вектором φ| и кет-вектором |ψ. Значение этого выражения есть скаляр (комплексное число).

В частности, матричный элемент оператора A в определённом базисе (в тензорных обозначениях — Akl) записывается в обозначениях Дирака как k|A|l, а среднее значение наблюдаемой (билинейная форма) на состоянии ψ — как ψ|A|ψ.

Умножение векторов на оператор (кет-вектора — слева, бра-вектора — справа) даёт векторы того же типа и записывается тем же способом, что принят в линейной алгебре (то есть в том случае, если бра- и кет-векторы отождествляются с векторами-строками и столбцами, а операторы — с квадратными матрицами):

|ψ~=A|ψ,
φ~|=φ|A.

Уравнение Шрёдингера (для стационарного состояния) будет иметь вид:

H|ψ=E|ψ, где H — гамильтониан, а E — скаляр (уровень энергии).

Отличия бра-кет-обозначений от традиционных

В математике употребляется обозначение «эрмитового» скалярного произведения φ,ψ в гильбертовом пространстве, имеющее тот же смысл, что и перемножение бра на кет. Однако математики обычно рассматривают угловые скобки как знак операции, а не части обозначения вектора. Традиционное математическое обозначение, в отличие от дираковского, несимметрично — оба вектора предполагаются величинами одного типа, и по первому аргументу из двух операция является антилинейной.

С другой стороны, произведение бра и кет является билинейным, но от двух аргументов разного типа. Сопряжённым к кет-вектору i|ψ будет являться бра-вектор iψ| (где i — мнимая единица). Однако, в квантовой механике эту странность обозначений позволено игнорировать, поскольку квантовое состояние, представляемое вектором, не зависит от его умножения на любые комплексные числа, по модулю равные единице.

Кроме того, использование бра и кет позволяет подчеркнуть отличие состояния ψ (записывается без скобок и палок) от конкретных векторов, его представляющих.

В отличие от алгебраических обозначений, где элементы базиса обозначаются как ek, в бра-кет-обозначениях может указываться только индекс базисного элемента: k|,|l. Этим они похожи на тензорные обозначения, но, в отличие от последних, позволяют записывать произведения операторов с векторами без использования дополнительных (подстрочных или надстрочных) букв.

Математические свойства

Бра и кет можно использовать и в чистой математике для обозначения элементов сопряжённых друг другу линейных пространств. Если, например, H=Rn, то кет-векторы считаются при этом «векторами-столбцами», а бра-векторы — «векторами-строками».

Перемножение бра- и кет-векторов друг на друга и на операторы можно рассматривать как частный случай матричного формализма «строка на столбец». А именно, надо положить кет-векторы матрицами размера N×1, бра-векторы — размера 1×N, операторы — размера N×N, где N — количество состояний квантовой системы (размерность пространства H). Матрицы размера 1 × 1 имеют единственный элемент и отождествляются со скалярами. В случае бесконечномерного пространства состояний на «матрицы» (фактически ряды) приходится накладывать дополнительные условия сходимости.

Формула для сопряжённого вектора выглядит следующим образом:

ψ|=(c1,c2,,cN), где |ψ=(c1c2cN)

Запись типа всегда означает скаляр. Бра-вектор всегда имеет скобку слева , кет-вектор — скобку справа . Вводится также произведение в «неестественном» порядке — |φψ| (аналогичное матричному умножению вектора-столбца на вектор-строку), которое даёт так называемый кет-бра-оператор. Оператор |ψφ| имеет ранг 1 и является тензорным произведением |ψ и φ|. Такие операторы часто рассматриваются в теории операторов и квантовых вычислениях. В частности, оператор |ψψ| (при нормировке ψ|ψ=1) является проектором на состояние ψ, точнее, на соответственное одномерное линейное подпространство в H.

Имеет место ассоциативность:

φ|A|ψ = φ|A|ψ = φ|A|ψ,
|ψφ|ψ~ = (|ψφ|)|ψ~

и т. д.

Литература

  • Белоусов Ю. М. Курс квантовой механики. Нерелятивистская теория. — М.: МФТИ, 2006. — 408 с.
  • Давыдов А. С. Квантовая механика. — М.: Наука, 1973. — 704 с.
  • Дирак П. А. М. Принципы квантовой механики. — М.: Наука, 1979. — 440 с.
  • Мессиа А. Квантовая механика. — М.: Наука, 1978. — Т. 1. — 478 с.
  • Шпольский Э. В. Атомная физика. — М.: Наука, 1974. — Т. 2. — 448 с.
  • Ярив А. Введение в теорию и приложения квантовой механики. — М.: Мир, 1984. — 360 с.