Перейти к содержанию

Константа Бруна

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

В 1919 году Вигго Брун показал, что сумма обратных значений для чисел-близнецов сходится к некоторой константе, которая получила название Константа Бруна для чисел-близнецов:[1]

B2=(13+15)+(15+17)+(111+113)+(117+119)+(129+131)+

Данный вывод интересен тем, что если бы эта сумма расходилась, то тем самым была бы доказана бесконечность последовательности пар чисел-близнецов. В настоящее время неизвестно, является ли константа Бруна иррациональным числом, но если это будет доказано, то отсюда будет следовать бесконечность последовательности пар чисел-близнецов. Доказательство рациональности константы Бруна оставит проблему чисел-близнецов открытой.

Существующими в настоящее время методами константу Бруна чрезвычайно трудно вычислить с высокой точностью. Строго доказаны границы 1,83<B2<2,1754[2]. Вычисления, использующие некоторые недоказанные гипотезы, дают оценку 1,902160583190±0,000000001175[1].

Аналогично существует константа Бруна для простых четверок. Простая четверка — это две пары чисел-близнецов, расстояние между которыми равно 4. Первые простые четверки — это (5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109). Константа Бруна для простых четверок, которая обозначается B4, представляет собой сумму чисел, обратных числам в этих четверках:

B4=(15+17+111+113)+(111+113+117+119)+(1101+1103+1107+1109)+

См. также

Примечания

  1. Перейти обратно: 1,0 1,1 последовательность A065421 в OEIS
  2. Crandall, Richard; Pomerance, Carl (2005). Prime Numbers: A Computational Perspective. Springer. ISBN 0387252827.. Дата обращения: 2 октября 2017. Архивировано 6 апреля 2015 года.