Закон Ома

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Классическая электродинамика
Электричество · Магнетизм
U — напряжение,
I — сила тока,
R — сопротивление

Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.

В своей работе[1] Ом записал закон в следующем виде:

[math]\displaystyle{ X\! = {a \over {b+l}}, \qquad(1) }[/math]

где:

  • X — показания гальванометра (в современных обозначениях, сила тока I);
  • a — величина, характеризующая свойства источника напряжения, постоянная в широких пределах и не зависящая от величины тока (в современной терминологии, электродвижущая сила (ЭДС) ε);
  • l — величина, определяемая длиной соединяющих проводов (в современных представлениях соответствует сопротивлению внешней цепи R);
  • b — параметр, характеризующий свойства всей электрической установки (в современных представлениях, параметр, в котором можно усмотреть учёт внутреннего сопротивления источника тока r).

Формула (1) при использовании современных терминов выражает закон Ома для полной цепи:

[math]\displaystyle{ I \! = { \varepsilon \! \over {R+r} }, \qquad(2) }[/math]

где:

Из закона Ома для полной цепи вытекают следующие следствия:

  • при [math]\displaystyle{ r\ll R }[/math] сила тока в цепи обратно пропорциональна её сопротивлению, а сам источник в ряде случаев может быть назван источником напряжения;
  • при [math]\displaystyle{ r\gg R }[/math] сила тока не зависит от свойств внешней цепи (от величины нагрузки), и источник может быть назван источником тока.

Часто[2] выражение

[math]\displaystyle{ U\! = IR, \qquad(3) }[/math]

где [math]\displaystyle{ U }[/math] есть напряжение, или падение напряжения (или, что то же, разность потенциалов между началом и концом участка проводника), тоже называют «законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

[math]\displaystyle{ {\varepsilon\!} = Ir + IR = U(r) + U (R). \qquad(4) }[/math]

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

К другой записи формулы (3), а именно:

[math]\displaystyle{ I\! = {U \over R} \qquad(5) }[/math]

применима другая формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Выражение (5) можно переписать в виде

[math]\displaystyle{ I\! = {U G}, \qquad(6) }[/math]

где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный ом» — Мо[3], в Международной системе единиц (СИ) единицей измерения проводимости является си́менс (русское обозначение: См; международное: S), величина которого равна обратному ому.

Мнемоническая диаграмма для закона Ома

Схема, иллюстрирующая три составляющие закона Ома
Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления
U — электрическое напряжение;
I — сила тока;
P — электрическая мощность;
R — электрическое сопротивление

В соответствии с этой диаграммой формально может быть записано выражение:

[math]\displaystyle{ R\!= {U \over I}, \qquad(7) }[/math]

которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

[math]\displaystyle{ R\!= {\varrho l \over s}, \qquad(8) }[/math]

где:

  • [math]\displaystyle{ \varrho }[/math] — удельное электрическое сопротивление материала, из которого сделан проводник,
  • [math]\displaystyle{ l }[/math] — его длина
  • [math]\displaystyle{ s }[/math] — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами, задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока [math]\displaystyle{ P }[/math] = [math]\displaystyle{ {\varepsilon\! I\!} }[/math] при минимальных потерях мощности в линии передачи [math]\displaystyle{ P (r) = UI, }[/math] где [math]\displaystyle{ U\! = Ir , }[/math] причём [math]\displaystyle{ r }[/math] на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением

[math]\displaystyle{ P(r) = \frac{P^2 r}{\varepsilon ^2}. \qquad(9) }[/math]

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, желательно всемерное увеличение ЭДС. Однако ЭДС ограничивается электрической прочностью обмотки генератора, поэтому повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в линии возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее практически используемое напряжение в дальних ЛЭП обычно не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Закон Ома в дифференциальной форме

Сопротивление [math]\displaystyle{ R }[/math] зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

[math]\displaystyle{ \mathbf{J} = \sigma \mathbf{E}, }[/math]

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость [math]\displaystyle{ \sigma_{ij} }[/math] является симметричным тензором ранга (1, 1), а закон Ома, записанный в дифференциальной форме, приобретает вид

[math]\displaystyle{ J_i = \sum_{j=1}^3\sigma_{ij}E_j. }[/math]

Раздел физики, изучающий течение электрического тока (и другие электромагнитные явления) в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновременности достижения напряжением и током своих максимальных значений, то есть учёт фазового сдвига.

Если ток является синусоидальным с циклической частотой ω, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

[math]\displaystyle{ \mathbb{U} = \mathbb{I} \cdot \mathbb{Z}, }[/math]

где:

  • [math]\displaystyle{ \mathbb{U} = U_0 e^{i\omega t} }[/math] — комплексное напряжение или разность потенциалов,
  • [math]\displaystyle{ \mathbb{I} }[/math] — комплексная сила тока,
  • [math]\displaystyle{ \mathbb{Z} = R e^{-i\delta} }[/math] — комплексное сопротивление (электрический импеданс),
  • R = Ra2 + Rr2 — полное сопротивление (модуль импеданса),
  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока (фаза импеданса, с точностью до обратного знака).

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, [math]\displaystyle{ U=U_0\sin(\omega t+\varphi) }[/math] подбором такой [math]\displaystyle{ \mathbb{U}=U_0e^{i(\omega t + \varphi)}, }[/math] что [math]\displaystyle{ \operatorname{Im} \mathbb{U} = U. }[/math] Тогда все значения токов и напряжений в схеме надо считать как [math]\displaystyle{ F=\operatorname{Im} \mathbb{F}. }[/math]

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо. Нелинейность цепи приводит к возникновению гармоник (колебаний с частотой, кратной частоте тока, действующего на цепь), а также колебаний с суммарными и разностными частотами. Вследствие этого закон Ома в нелинейных цепях, вообще говоря, не выполняется.

Трактовка и пределы применимости закона Ома

Закон Ома, в отличие от, например, закона Кулона, является не фундаментальным физическим законом, а лишь эмпирическим соотношением, хорошо описывающим наиболее часто встречаемые на практике типы проводников в приближении небольших частот, плотностей тока и напряжённостей электрического поля, но перестающим соблюдаться в ряде ситуаций.

В классическом приближении закон Ома можно вывести при помощи теории Друде:

[math]\displaystyle{ \mathbf{J}=\frac{n \cdot e_0^{2}\cdot\tau}{m} \cdot\mathbf{E}=\sigma\cdot\mathbf{E}. }[/math]

Здесь:

Проводники и элементы, для которых соблюдается закон Ома, называются омическими.

Закон Ома может не соблюдаться:

Примечания

  1. G. S. Ohm (1827). Die galvanische Kette, mathematisch bearbeitet. Berlin: T. H. Riemann. Архивная копия от 15 марта 2017 на Wayback Machine
  2. Преимущественно в школьных учебниках и научно-популярной литературе.
  3. Мо / 39422 // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
  4. Рез И. С., Поплавко Ю. М. Диэлектрики. Основные свойства и применения в электронике. — М., Радио и связь, 1989, — с. 46-51

Ссылки

  • Закон Ома // Элементы.ru. Природа науки, Энциклопедия