MAPK1
Шаблон:Infobox gene MAPK1 («митоген-активируемая белковая киназа 1»; англ. mitogen-activated protein kinase 1, ERK2) — цитозольная серин/треониновая протеинкиназа, семейства MAPK группы ERK, продукт гена MAPK1[1].
Структура
MAP3K13 состоит из 360 аминокислот, молекулярная масса 41,4 кДа. Описано 2 изоформы белка, образующиеся в результате альтернативного сплайсинга.
Функция
MAPK1, или ERK2, — фермент семейства MAPK из группы киназ, регулируемых внеклеточными сигналами (ERK) — функционирует как интегральная точка пересечения многих биохимических сигналов и вовлечён во множество клеточных процессов, таких как пролиферация, клеточная дифференцировка, регуляция транскрипции и развитие. Активация киназы требует её фосфорилирования другими киназами, расположенными выше в сигнальном каскаде. После активации киназа транслоцируется в клеточное ядро, где фосфорилирует ядерные мишени. Обнаружено две изоформы MAPK1[2]. Молекула MAPK1 содержит множественные участки фосфорилирования и убиквитинирования[3].
Взаимодействия
MAPK1 взаимодействует со следующими белками:
- ADAM17,[4]
- CIITA,[5]
- DUSP1,[6][7]
- DUSP22,[8]
- DUSP3,[9]
- ELK1,[10][11]
- FHL2,[12]
- HDAC4,[13]
- MAP2K1,[14][15][16][17][18][19]
- MAP3K1[20]
- MAPK14,[14][21]
- MKNK1,[22]
- MKNK2,[22][23]
- Myc,[24][25][26]
- NEK2,[27]
- PEA15,[28]
- PTPN7,[29][30]
- PEBP1,[16]
- RPS6KA1,[10][31][32]
- RPS6KA2,[32][33]
- RPS6KA3,[31][33]
- SORBS3,[34]
- STAT5A,[35][36]
- TNIP1,[37]
- TOB1,[38]
- TSC2,[39]
- UBR5,[10]
- VAV1[40][41].
Клиническое значение
Мутации гена MAPK1 приводит ко многим типам рака[42].
Примечания
- ↑ (February 1992) «Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs». Biochem. Biophys. Res. Commun. 182 (3): 1416–22. doi:10.1016/0006-291X(92)91891-S. PMID 1540184.
- ↑ Entrez Gene: MAPK1 mitogen-activated protein kinase 1.
- ↑ ERK2 (human). www.phosphosite.org. Дата обращения: 31 октября 2020. Архивировано 7 ноября 2020 года.
- ↑ (June 2002) «Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding». Mol. Biol. Cell 13 (6): 2031–44. doi:10.1091/mbc.01-11-0561. PMID 12058067.
- ↑ (April 2008) «Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator». J. Biol. Chem. 283 (14): 9031–9. doi:10.1074/jbc.M706487200. PMID 18245089.
- ↑ (May 2001) «Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1». J. Biol. Chem. 276 (19): 16491–500. doi:10.1074/jbc.M010966200. PMID 11278799.
- ↑ (June 2008) «Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma». Cancer Res. 68 (11): 4192–200. doi:10.1158/0008-5472.CAN-07-6157. PMID 18519678.
- ↑ (July 2001) «Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain». J. Biol. Chem. 276 (29): 27575–83. doi:10.1074/jbc.M100408200. PMID 11346645.
- ↑ (May 1999) «Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway». J. Biol. Chem. 274 (19): 13271–80. doi:10.1074/jbc.274.19.13271. PMID 10224087.
- ↑ 10,0 10,1 10,2 (April 2003) «Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs». J. Biol. Chem. 278 (17): 14926–35. doi:10.1074/jbc.M300485200. PMID 12594221.
- ↑ (November 1995) «Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction». J. Cell Sci. 108 (11): 3599–609. PMID 8586671.
- ↑ (February 2004) «Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes». Mol. Cell. Biol. 24 (3): 1081–95. doi:10.1128/mcb.24.3.1081-1095.2004. PMID 14729955.
- ↑ (December 2000) «Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras». Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14329–33. doi:10.1073/pnas.250494697. PMID 11114188.
- ↑ 14,0 14,1 (May 2003) «p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels». Mol. Cell. Biol. 23 (9): 3079–90. doi:10.1128/mcb.23.9.3079-3090.2003. PMID 12697810.
- ↑ (April 2002) «Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1». J. Biol. Chem. 277 (17): 14844–52. doi:10.1074/jbc.M107776200. PMID 11823456.
- ↑ 16,0 16,1 (May 2000) «Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein». Mol. Cell. Biol. 20 (9): 3079–85. doi:10.1128/mcb.20.9.3079-3085.2000. PMID 10757792.
- ↑ (February 2001) «A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment». J. Cell Biol. 152 (4): 765–76. doi:10.1083/jcb.152.4.765. PMID 11266467.
- ↑ (July 2001) «Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking». J. Biol. Chem. 276 (28): 26509–15. doi:10.1074/jbc.M102769200. PMID 11352917.
- ↑ (May 2001) «Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2». J. Biol. Chem. 276 (19): 16070–5. doi:10.1074/jbc.M100681200. PMID 11279118.
- ↑ (December 2000) «MEKK1 binds raf-1 and the ERK2 cascade components». J. Biol. Chem. 275 (51): 40120–7. doi:10.1074/jbc.M005926200. PMID 10969079.
- ↑ (February 2001) «Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions». EMBO J. 20 (3): 466–79. doi:10.1093/emboj/20.3.466. PMID 11157753.
- ↑ 22,0 22,1 (April 1997) «Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2». EMBO J. 16 (8): 1909–20. doi:10.1093/emboj/16.8.1909. PMID 9155017.
- ↑ (August 2003) «The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization». Mol. Cell. Biol. 23 (16): 5692–705. doi:10.1128/mcb.23.16.5692-5705.2003. PMID 12897141.
- ↑ (September 2004) «Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation». J. Biol. Chem. 279 (38): 40209–19. doi:10.1074/jbc.M404056200. PMID 15210690.
- ↑ (October 1994) «MAP kinase binds to the NH2-terminal activation domain of c-Myc». FEBS Lett. 353 (3): 281–5. doi:10.1016/0014-5793(94)01052-8. PMID 7957875.
- ↑ (July 1997) «Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase». Proc. Natl. Acad. Sci. U.S.A. 94 (14): 7337–42. doi:10.1073/pnas.94.14.7337. PMID 9207092.
- ↑ (August 2004) «Nek2A specifies the centrosomal localization of Erk2». Biochem. Biophys. Res. Commun. 321 (2): 495–501. doi:10.1016/j.bbrc.2004.06.171. PMID 15358203.
- ↑ (August 2001) «PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase». Dev. Cell 1 (2): 239–50. doi:10.1016/s1534-5807(01)00035-1. PMID 11702783.
- ↑ (February 2000) «The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP». Oncogene 19 (7): 858–69. doi:10.1038/sj.onc.1203408. PMID 10702794.
- ↑ (April 1999) «Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)». J. Biol. Chem. 274 (17): 11693–700. doi:10.1074/jbc.274.17.11693. PMID 10206983.
- ↑ 31,0 31,1 (January 1999) «Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo». J. Biol. Chem. 274 (5): 2893–8. doi:10.1074/jbc.274.5.2893. PMID 9915826.
- ↑ 32,0 32,1 (July 2003) «Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity». Mol. Cell. Biol. 23 (14): 4796–804. doi:10.1128/mcb.23.14.4796-4804.2003. PMID 12832467.
- ↑ 33,0 33,1 (November 1996) «Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases». J. Biol. Chem. 271 (47): 29773–9. doi:10.1074/jbc.271.47.29773. PMID 8939914.
- ↑ (August 2004) «Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin». J. Biol. Chem. 279 (33): 34570–7. doi:10.1074/jbc.M402304200. PMID 15184391.
- ↑ (April 1999) «Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a». Mol. Endocrinol. 13 (4): 555–65. doi:10.1210/mend.13.4.0263. PMID 10194762.
- ↑ (August 2000) «Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins». Mol. Cell. Endocrinol. 166 (2): 89–99. doi:10.1016/s0303-7207(00)00277-x. PMID 10996427.
- ↑ (September 2002) «A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling». Biochem. Biophys. Res. Commun. 297 (1): 17–23. doi:10.1016/s0006-291x(02)02086-7. PMID 12220502.
- ↑ (October 2002) «Identification of the Anti-proliferative protein Tob as a MAPK substrate». J. Biol. Chem. 277 (40): 37783–7. doi:10.1074/jbc.M204506200. PMID 12151396.
- ↑ (April 2005) «Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis». Cell 121 (2): 179–93. doi:10.1016/j.cell.2005.02.031. PMID 15851026.
- ↑ (October 1996) «Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex». J. Biol. Chem. 271 (43): 26962–70. doi:10.1074/jbc.271.43.26962. PMID 8900182.
- ↑ (January 1997) «Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6». FEBS Lett. 401 (2–3): 133–7. doi:10.1016/s0014-5793(96)01456-1. PMID 9013873.
- ↑ Expression of MAPK1 in cancer - Summary - The Human Protein Atlas. www.proteinatlas.org. Дата обращения: 2 апреля 2021. Архивировано 27 февраля 2021 года.
Литература
- (1995) «Hyperphosphorylation of tau in PHF». Neurobiol. Aging 16 (3): 365–71; discussion 371–80. doi:10.1016/0197-4580(95)00027-C. PMID 7566346.
- (2014) «Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1». J Leukoc Biol 95 (4): 651–9. doi:10.1189/jlb.1013565. PMID 24374966.
- (1995) «Transcriptional regulation by MAP kinases». Mol. Reprod. Dev. 42 (4): 459–67. doi:10.1002/mrd.1080420414. PMID 8607977.
- (2002) «Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway». J. Neurovirol. 8 Suppl 2 (2): 91–6. doi:10.1080/13550280290167885. PMID 12491158.
- (2003) «HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication». J. Biosci. 28 (3): 323–35. doi:10.1007/BF02970151. PMID 12734410.
- (2007) «The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition». Oncogene 26 (22): 3227–39. doi:10.1038/sj.onc.1210414. PMID 17496918.