Теория Эйнштейна — Картана

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Теория Эйнштейна — Картана (ЭК) была разработана как расширение общей теории относительности, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина материальных полей[1]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен общей теории относительности, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к общей теории относительности в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

Состояние теории и её основные уравнения

Теория Картана стоит особняком среди альтернативных теорий гравитации как потому, что она неметрическая, так и потому, что она очень старая. Состояние теории Картана неясно. Уилл (1986) утверждает, что все неметрические теории противоречат Эйнштейновскому принципу эквивалентности (ЭПЭ), и поэтому должны быть отброшены. В одной из последующих работ Уилл (2001) смягчает это утверждение, разъясняя экспериментальные критерии тестирования неметрических теорий на удовлетворение ЭПЭ. Мизнер, Торн и Уилер (1973) утверждают, что теория Картана является единственной неметрической теорией, проходящей все экспериментальные тесты, а Турышев (2007) приводит эту теорию в списке удовлетворяющих всем текущим экспериментальным ограничениям.

Картан (1922, 1923) предложил простое обобщение теории гравитации Эйнштейна, введя модель пространства-времени с метрическим тензором и линейной связностью, ассоциированной с метрикой, но не обязательно симметричной. Антисимметричная часть связности — тензор кручения — связывается в этой теории с плотностью внутреннего момента импульса (спина) материи. Независимо от Картана, похожие идеи развивали Сиама, Киббл и Хейл в промежутке от 1958 до 1966 года.

Исходно теория была развита в формализме дифференциальных форм, но здесь она будет изложена на тензорном языке. Лагранжева плотность гравитации в этой теории формально совпадает с таковой ОТО и равняется скаляру кривизны:

[math]\displaystyle{ L={1\over 16\pi G}R(\Gamma,g)\; , }[/math]

однако введение кручения модифицирует связность, которая теперь не равняется символам Кристоффеля, а равна их сумме с тензором конторсии

[math]\displaystyle{ \Gamma_{\nu\lambda}^\mu=\left\{{^{\ \mu\ }_{\;\nu\lambda\;}} \right\}+K_{\nu\lambda}^\mu\; , }[/math]
[math]\displaystyle{ K_{\mu\nu\lambda}=Q_{\mu\nu\lambda}+Q_{\lambda\nu\mu} + Q_{\nu\lambda\mu},\qquad Q_{\mu\nu\lambda}=\frac12 (\Gamma_{\mu\nu\lambda}-\Gamma_{\mu\lambda\nu})\; , }[/math]

где [math]\displaystyle{ Q_{\mu\nu\lambda}\; }[/math] — антисимметричная часть линейной связности — кручение. Предполагается, что линейная связность является метрической, что снижает количество степеней свободы, присущих неметрическим теориям. Уравнения движения этой теории включают 10 уравнений для тензора энергии-импульса, 24 уравнения для канонического тензора спина и уравнения движения материальных негравитационных полей[1]:

[math]\displaystyle{ R_{\mu\nu}-\frac12 g_{\mu\nu}R + 4 {B^{[\alpha}}_{\beta\mu} {B^{\beta]}}_{\alpha\nu} + 2B_{\beta\alpha\mu}{B_\nu}^{\beta\alpha} - B_{\mu\beta\alpha}{B_\nu}^{\beta\alpha} - }[/math]
[math]\displaystyle{ - \frac12g_{\mu\nu} (4 {{B_{\alpha}}^{\beta}}_{[\lambda} {B^{\alpha\lambda}}_{\beta]} + B_{\alpha\beta\gamma}B^{\alpha\beta\gamma})=\kappa T_{\mu\nu}\; , }[/math]
[math]\displaystyle{ {Q^\lambda}_{\mu\nu} + {\delta_\mu}^\lambda Q_\nu - {\delta_\nu}^\lambda Q_\mu = \kappa {s^\lambda}_{\mu\nu}\; , }[/math]
[math]\displaystyle{ \frac{\partial L}{\partial \phi_A} + (\nabla_\lambda-2Q_\lambda) \frac{\partial L}{\partial \nabla_\lambda\phi_A}=0\; , }[/math]

где [math]\displaystyle{ T_{\mu\nu}=\frac\delta{\delta g^{\mu\nu}}(\sqrt{-g}L_m)\; }[/math] — метрический тензор энергии-импульса материи, [math]\displaystyle{ s^\lambda_{\mu\nu}=\frac{\delta L_m}{\delta Q^{\mu\nu}_\lambda}\; }[/math] — канонический тензор спина, [math]\displaystyle{ {B^\lambda}_{\mu\nu}={Q^\lambda}_{\mu\nu} + {\delta_\mu}^\lambda Q_\nu - {\delta_\nu}^\lambda Q_\mu\; }[/math], а [math]\displaystyle{ Q_\mu={Q^\lambda}_{\mu\lambda}\; }[/math] — след тензора кручения.

Кривизна пространства-времени при этом — не риманова, но на римановом пространстве-времени лагранжиан сводится к лагранжиану ОТО. Эффекты неметричности в данной теории являются настолько малыми, что ими можно пренебречь даже в нейтронных звёздах. Единственной областью сильных расхождений оказывается, возможно, очень ранняя Вселенная. Привлекательной чертой этой теории (и её модификаций) является возможность получения несингулярных решений типа «отскока» для Большого Взрыва (см. Минкевич и соавт. (1980)).

Примечания

  1. 1,0 1,1 Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.

См. также