Спин
Спин (от англ. spin, букв. — «вращение, вращать(-ся)») — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968), Alexei Deriglazov, Classical Mechanics (Second Edition, Springer 2017), Пенроуз и Риндлер, Спиноры и пространство-время). Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.
Спин измеряется в единицах ħ[1] (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число (оно есть число, характеризующее представления группы вращений и группы Лоренца, то есть сколько в нём собственно квантовости и сколько неквантовости, сейчас неизвестно), которое обычно называют просто спином (одно из квантовых чисел). Спин свободной частицы измерить нельзя, так как для измерения требуется[источник не указан 1131 день] внешнее магнитное поле, а оно делает частицу несвободной.
В связи с этим говорят о целом или полуцелом спине частицы. Полуцелый спин фундаментальнее, так как "из него" можно построить целый спин, но обратное невозможно (см. книгу Пенроуза и Риндлера).
Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике: обменного взаимодействия.
Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике[2]. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы[3].
Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы[4].
Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином [math]\displaystyle{ 0 }[/math] описываются однокомпонентной волновой функцией (скаляр), со спином [math]\displaystyle{ \frac{1}{2} }[/math] описываются двухкомпонентной волновой функцией (спинор), со спином [math]\displaystyle{ 1 }[/math] описываются трёхкомпонентной волновой функцией (вектор), со спином [math]\displaystyle{ 2 }[/math] описываются пятикомпонентной волновой функцией (тензор)[5].
Что такое спин — на примерах
Хотя термин «спин» относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже могут быть описаны неким числом, которое показывает, на сколько частей нужно разделить цикл вращения некоего элемента системы, чтобы она вернулась в состояние, неотличимое от начального.
Легко представить себе спин, равный 0: это точка — она со всех сторон выглядит одинаково, как её ни крути.
Примером спина, равного 1, может служить большинство обычных предметов без какой-либо симметрии: если такой предмет повернуть на 360°, то этот предмет вернётся в своё первоначальное состояние. Для примера — можно положить ручку на стол, и после поворота на 360° ручка опять будет лежать так же, как и до поворота.
В качестве примера спина, равного 2, можно взять любой предмет с одной осью центральной симметрии: если его повернуть на 180°, он будет неотличим от исходного положения, и получается, что за один полный оборот он становится неотличим от исходного положения 2 раза. Примером из жизни может служить обычный карандаш, только заточённый с двух сторон или не заточённый вообще — главное чтобы был без надписей и однотонный — и тогда после поворота на 180° он вернётся в положение, неотличимое от исходного. Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы[6]
А вот с полуцелым спином, равным 1/2 немножко сложнее: в исходное положение система возвращается после 2 полных оборотов, то есть после поворота на 720°. Примеры:
- Если взять ленту Мёбиуса и представить, что по ней ползёт муравей, тогда, сделав один оборот (пройдя 360°), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720°.
- Четырёхтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360° поршень вернётся в исходное положение (например, верхнюю мёртвую точку), но распределительный вал вращается в 2 раза медленнее и совершит полный оборот при повороте коленчатого вала на 720°. То есть при повороте коленчатого вала на 2 оборота двигатель внутреннего сгорания вернётся в то же состояние. В этом случае третьим измерением будет положение распределительного вала.
На подобных примерах можно проиллюстрировать сложение спинов:
- Два заточенных только с одной стороны одинаковых карандаша («спин» каждого — 1), скреплённые боковыми сторонами друг с другом так, что острый конец одного будет рядом с тупым концом другого (↑↓). Такая система вернётся в неотличимое от начального состояния при повороте всего на 180°, то есть «спин» системы стал равным двум.
- Многоцилиндровый четырёхтактный двигатель внутреннего сгорания («спин» каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360° (суммарный «спин» — 1), четырёхцилиндровый — через 180° («спин» — 2), восьмицилиндровый — через 90° («спин» — 4).
Свойства спина
Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином.
В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин — это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики. Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.
В частности, было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“[7]
Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина [math]\displaystyle{ \hat{\vec{s}}, }[/math] алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента [math]\displaystyle{ \hat{\vec{\ell}}. }[/math] Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ).
Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина — например, [math]\displaystyle{ J_{z} }[/math]. При этом компоненты [math]\displaystyle{ J_{x}, J_{y} }[/math] флуктуируют вокруг среднего значения. Максимально возможное значение компоненты [math]\displaystyle{ J_{z} }[/math] равно [math]\displaystyle{ J }[/math]. В то же время квадрат [math]\displaystyle{ J^2 }[/math] всего вектора спина равен [math]\displaystyle{ J(J+1) }[/math]. Таким образом, [math]\displaystyle{ J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2} \geqslant J }[/math]. При [math]\displaystyle{ J=\frac{1}{2} }[/math] среднеквадратические значения всех компонентов из-за флуктуаций равны [math]\displaystyle{ \widehat{J_{x}^{2}} = \widehat{J_{y}^{2}} =\widehat{J_{z}^{2}} = \frac{1}{4} }[/math][2].
Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта[8].
Примеры
Ниже указаны спины некоторых микрочастиц.
спин | общее название частиц | примеры |
---|---|---|
0 | скалярные частицы | π-мезоны, K-мезоны, хиггсовский бозон, атомы и ядра 4He, чётно-чётные ядра, парапозитроний |
1/2 | спинорные частицы | электрон, кварки, мюон, тау-лептон, нейтрино, протон, нейтрон, атомы и ядра 3He |
1 | векторные частицы | фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний |
3/2 | спин-векторные частицы | Ω-гиперон, Δ-резонансы |
2 | тензорные частицы | гравитон, тензорные мезоны |
На июль 2004 года максимальным спином среди известных барионов обладал барионный резонанс Δ(2950) со спином [math]\displaystyle{ 15/2 }[/math]. Среди долгоживущих изотопов химических элементов[2] максимальным спином обладает изотоп висмута 209Bi, его спин составляет [math]\displaystyle{ 9/2 }[/math]. Некоторые короткоживущие изотопы и особенно изомеры могут иметь очень высокий спин, например у изотопа таллия205m2Tl спин [math]\displaystyle{ 35/2 }[/math], а изотоп полония 211m3Po имеет спин [math]\displaystyle{ 43/2 }[/math].
История
В 1922 году опыт Штерна — Герлаха подтвердил наличие у атомов спина и факт пространственного квантования направления их магнитных моментов.
Сам термин «спин» в науку ввели С. Гаудсмит и Д. Уленбек в 1925 г.[9][10].
В 1924 году, ещё до точной формулировки квантовой механики, Вольфганг Паули ввёл новую, двухкомпонентную внутреннюю степень свободы для описания валентного электрона в щелочных металлах. В 1927 году он же модифицировал недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном (то есть не связанном прямо с обычным) двумерном спиновом пространстве.
В 1928 году Поль Дирак построил релятивистскую теорию спина и ввёл уже четырёхкомпонентную величину — биспинор.
Математически теория спина оказалась очень продуктивной, и в дальнейшем по аналогии с ней была построена теория изоспина.
Спин и магнитный момент
Орбитальный магнитный момент электрона внутри атома кратен магнетону Бора. Но помимо орбитального момента количества движения [math]\displaystyle{ M_l }[/math], обусловленного движением вокруг атомного ядра, электрон обладает собственным механическим моментом — спином [math]\displaystyle{ s = 1/2 }[/math] (в единицах ħ), а также спиновым магнитным моментом (который по факту не кратен магнетону Бора). Спиновый магнитный момент [math]\displaystyle{ \mu_s = g_e \mu_B s }[/math], где [math]\displaystyle{ g_e }[/math] — g-фактор электрона, равный для электрона по данным экспериментов ~2,00231930436153.
Спин и статистика
Вследствие того, что все элементарные частицы одного и того же сорта тождественны, волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе — Эйнштейна и называются бозонами. Во втором случае частицы описываются статистикой Ферми — Дирака и называются фермионами.
Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) — фермионами[1].
Обобщение спина
Введение спина является удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в особом изоспиновом пространстве. В дальнейшем при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.
Спин классических систем
Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса[11]. Классический спин является 4-вектором и определяется следующим образом:
- [math]\displaystyle{ S_\nu = \frac{1}{2}\,\varepsilon_{\nu\alpha\beta\gamma}\,L^{\alpha\beta}\,U^\gamma, }[/math]
где
- [math]\displaystyle{ L^{\alpha\beta}=\sum (x^\alpha p^\beta-x^\beta p^\alpha) }[/math] — тензор полного момента импульса системы (суммирование проводится по всем частицам системы);
- [math]\displaystyle{ U^{\alpha}=P^\alpha/M }[/math] — суммарная 4-скорость системы, определяемая при помощи суммарного 4-импульса [math]\displaystyle{ P^\alpha=\sum p^\alpha }[/math] и массы M системы;
- [math]\displaystyle{ \varepsilon_{\nu\alpha\beta\gamma} }[/math] — тензор Леви-Чивиты.
В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости [math]\displaystyle{ U^{\alpha}. }[/math] В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.
Именно поэтому спин называют собственным моментом импульса.
В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.
См. также
- Прецессия Томаса
- Спин-орбитальное взаимодействие
- Преобразование Гольштейна — Примакова
- Спинор
- Теорема Паули (Теорема о связи спина со статистикой)
- Синглет
- Спин-запрещенные реакции
Примечания
- ↑ 1,0 1,1 Фундаментальные частицы и взаимодействия . Дата обращения: 13 июля 2014. Архивировано 9 мая 2017 года.
- ↑ 2,0 2,1 2,2 Широков, 1972, с. 44.
- ↑ Широков, 1972, с. 45.
- ↑ Паули, 1947, с. 279.
- ↑ Ширков, 1980, с. 147.
- ↑ STEPHEN HAWKING. A Brief History of Time from the Big Bang to Black Holes. — Space Time Publications. — Кэмбридж: Carl Sagan Interior Illustrations, 1998. — С. 232. — 232 с. — ISBN 978-5-367-00754-1.
- ↑ Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Том. III, Гл. VIII, §54 Спин
- ↑ Широков, 1972, с. 276.
- ↑ Гаудсмит С. «Открытие спина электрона» Архивная копия от 11 октября 2018 на Wayback Machine // УФН, т. 93, с. 151—158 (1967)
- ↑ Евгений Берклвич. Эпизоды «революции вундеркиндов». Эпизод первый. Борн, Паули и спин // Наука и жизнь. — 2018. — № 10. — С. 48—55. Архивировано 11 октября 2018 года.
- ↑ Вейнберг С. Гравитация и космология. — M.: Мир, 1975.
Литература
- Физическая энциклопедия / Под ред. А. М. Прохорова. — М.: Большая российская энциклопедия, 1994. — ISBN 5-85270-087-8.
- Richard G. Milner. A Short History of Spin (англ.) // Contribution to the XVth International Workshop on Polarized Sources, Targets, and Polarimetry. — Charlottesville, Virginia, USA, September 9-13, 2013. — arXiv:1311.5016.
- Широков Ю.М., Юдин Н.П. Ядерная физика. — М.: Наука, 1972. — 672 с.
- Ширков Д. В. Физика микромира. — М.: Советская энциклопедия, 1980. — 527 с.
- Паули В. Общие принципы волновой механики. — М.: ОГИЗ, 1947. — 333 с.
Статьи
- (1949) «A precise method of determining the faraday by magnetic resonance». Physical Review 76 (12): 1877–1878. doi:10.1103/PhysRev.76.1877.2. .
- Cohen-Tannoudji, Claude. Quantum Mechanics / Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë. — 2 volume set. — John Wiley & Sons, 2006. — ISBN 978-0-471-56952-7.
- Condon, E. U. Especially Chapter 3 // The Theory of Atomic Spectra / E. U. Condon, G. H. Shortley. — Cambridge University Press, 1935. — ISBN 978-0-521-09209-8.