Пример Помпею

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
График некоторой функции Помпею. По графику можно видеть, что производная нулевая во всех точках, где функция принимает рациональное значение из интервала (0;1)
График её производной

Пример Помпею — пример дифференцируемой функции, производная которой (производная Помпею) обращается в ноль на плотном множестве. В частности, производная Помпею разрывна в любой точке, где она не равна 0.

История

Вопрос о том, могут ли существовать такие функции, не являющиеся тождественно нулевыми, возник в контексте исследований функциональной дифференцируемости и интегрируемости в начале 1900-х годов. На этот вопрос утвердительно ответил Димитри Помпейу, построив явный пример.

Построение

Пусть [math]\displaystyle{ \sqrt[3]{x} }[/math] обозначает вещественный кубический корень вещественного числа [math]\displaystyle{ x }[/math]. Выберем перечисление рациональных чисел в единичном интервале [math]\displaystyle{ q_1,q_2,\dots }[/math] и положительные числа [math]\displaystyle{ a_1,a_2,\dots }[/math] такие, что

[math]\displaystyle{ a_1+a_2+\dots\lt \infty }[/math]

Рассмотрим функцию

[math]\displaystyle{ g(x): = a_0+\sum_{j=1}^\infty \,a_j \sqrt[3]{x-q_j}. }[/math]

Для любого x из [0, 1] каждый член ряда меньше или равна aj по абсолютной величине, так что по признаку Вейерштрасса ряд равномерно сходится к непрерывной строго возрастающей функции g(x). Более того, оказывается, что функция g дифференцируема, причем

[math]\displaystyle{ g'(x) := \frac{1}{3}\sum_{j=1}^\infty \frac{a_j}{\sqrt[3]{(x-q_j)^2}}\gt 0, }[/math]

в любой точке, где сумма конечна; кроме того, во всех остальных точках, в частности, в любом из qj, g′(x) := +∞.

Поскольку образ g представляет собой замкнутый ограниченный интервал с левым концом

[math]\displaystyle{ g(0) = a_0-\sum_{j=1}^\infty \,a_j \sqrt[3]{q_j}, }[/math]

с точностью до выбора a0 мы можем считать g(0) = 0 и с точностью до выбора мультипликативного множителя можем считать, что g отображает интервал [0, 1] на себя. Поскольку g строго возрастает, он инъективен и, следовательно, гомеоморфизм.

По теореме о дифференцировании обратной функции обратная к ней функция f := g−1 имеет конечную производную в любой точке, которая обращается в нуль по крайней мере в точках {g(qj)}j∈ℕ. Они образуют плотное подмножество [0, 1] (на самом деле производная обнуляется на большем множестве, см. Свойства).

Свойства

  • Поскольку множество нулей производной любой всюду дифференцируемой функции является G-дельта-множеством, для любой функции Помпею это множество является плотным G-дельта-множеством. В частности, по теореме Бэра оно несчетно.
  • Линейная комбинация [math]\displaystyle{ a\cdot f+b\cdot g }[/math] функций Помпею имеет производную и обращается в нуль на множестве [math]\displaystyle{ \{\,x\in\R\mid f'(x)=g'(x)=0\,\} }[/math], которое является плотным G-дельта-множеством. Таким образом, функции Помпею образуют векторное пространство.
  • Предельная функция равномерно сходящейся последовательности производных Помпею является производной Помпею. Действительно, это производная по теореме о пределе под знаком производной. Более того, она обращается в нуль на пересечении нулевых множеств функций последовательности: поскольку это плотные G-дельта-множества, нулевое множество предельной функции также плотно.
    • Как следствие, класс E всех ограниченных производных Помпею на интервале [a, b] является замкнутым линейным подпространством банахова пространства всех ограниченных функций относительно равномерного расстояния (следовательно, это банахово пространство).
    • Вышеупомянутая конструкция Помпею положительна, что является редким свойством: теорема Вейля утверждает, что в общем случае производная Помпейу принимает как положительные, так и отрицательные значения в плотных множествах, в точном смысле, что такие функции составляют плотное G-дельта-множество банахова пространство E.

Литература