Перейти к содержанию

Станнид триниобия

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Станнид триниобия
Общие
Систематическое
наименование
Станнид триниобия
Хим. формула Nb3Sn
Рац. формула SnNb3
Физические свойства
Состояние кристаллы
Молярная масса 397,43 г/моль
Плотность 8,9 г/см³
Термические свойства
Температура
 • плавления 2130 °C
Энтальпия
 • образования -32 [1] кДж/моль
Классификация
Рег. номер CAS 12035-04-0
SMILES
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Станнид триниобия — бинарное интерметаллическое неорганическое соединение ниобия и олова с формулой Nb3Sn, кристаллы. Кристаллическая структура А15[англ.][2].

Получение

  • Сплавление стехиометрических количеств чистых веществ:
[math]\displaystyle{ \mathsf{ 3Nb + Sn \ \xrightarrow{2130^oC}\ Nb_3Sn } }[/math]

Физические свойства

Станнид триниобия образует кристаллы кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,5289 нм, Z = 2, структура типа вольфрама W [3][4][5][6].

Фазовая диаграмма Nb-Sn
Элементарная ячейка A3B Nb3Sn

При повышенном давлении (более 6,4 ГПа) обнаружено несколько фаз:

Соединение образуется по перитектической реакции при температуре 2130 °С[3].

При температуре 18,5 К переходит в сверхпроводящее состояние[7].

Применение

Магниты на основе Nb3Sn используются в сверхмощных турбогенераторах КГТ-20 и КГТ-1000 на основе сверхпроводимости[8][9], и при разработке сверхпроводящих электрических машин.

Примечания

  1. C. Toffolon, C. Servant, B. Sundman. Thermodynamic assessment of the Nb-Sn system // Journal of Phase Equilibria. — 1998. — Т. 19, № 5. — С. 479-485. — doi:10.1361/105497198770341978.
  2. Muller, 1980.
  3. 3,0 3,1 Диаграммы состояния двойных металлических систем / Под ред. Н. П. Лякишева. — М.: Машиностроение, 2001. — Т. 3 Книга 1. — 972 с. — ISBN 5-217-02843-2.
  4. B. Predel. Nb-Sn (Niobium-Tin) // Landolt-Börnstein - Group IV Physical Chemistry. — 1997. — Т. 5H. — С. 1-2. — doi:10.1007/10522884_2197.
  5. H. Okamoto. Nb-Sn (Niobium-Tin) // Journal of Phase Equilibria. — 2003. — Т. 24, № 4. — С. 380. — doi:10.1361/105497103770330488.
  6. V. N. Svechnikov, V. M. Pan, Yu. I. Beletskii. Phase Diagram of the Nb—Sn System // Physics and Metallurgy of Superconductors / Metallovedenie, Fiziko-Khimiya I Metallozipika Sverkhprovodnikov , pp. — 1995. — С. 174-178. — doi:10.1007/978-1-4684-8220-1_30.
  7. Superconductors (недоступная ссылка). Дата обращения: 5 октября 2014. Архивировано 6 октября 2014 года.
  8. Глебов, 1981.
  9. Антонов, 2013.

См. также

Литература

  • Сверхпроводящее соединение ниобий-олово / Пер. с англ. под ред. Шмидта В. В.. — М.: Металлургия, 1970. — 296 с.
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.
  • Справочник химика / Редкол.: Никольский Б.П. и др.. — 2-е изд., испр. — М.Л.: Химия, 1966. — Т. 1. — 1072 с.
  • Мнеян, М. Г. Сверхпроводники в современном мире. — М.: Просвещение, 1991. — 156 с. — ISBN ISBN 5-09-001845-6.
  • Химический энциклопедический словарь / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1983. — 792 с.
  • Антонов Ю. Ф. , Данилевич Я.Б. Криотурбогенератор КТГ-20 : опыт создания и проблемы сверхпроводникового электромашиностроения. — М.: Физматлит, 2013. — 600 с. — ISBN ISBN 978-5-9221-1521-6.
  • Глебов И. А. Турбогенераторы с использованием сверхпроводимости. — Л.: Наука : Ленингр. отд-ние, 1981. — 231 с.
  • Muller, J. (1980). A15-type superconductors. Reports on Progress in Physics, 43, 641-687.
  • Muller, J. A15-type superconductors. — 1980.