Перейти к содержанию

Ядро (теория игр)

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
(перенаправлено с «C-ядро»)

С-ядро (англ. core, произносится цэ-ядро) — принцип оптимальности в теории кооперативных игр, представляющий собой множество эффективных распределений выигрыша, устойчивых к отклонениям любой коалиции игроков, то есть множество векторов [math]\displaystyle{ \mathbf{x}=(x_1, x_2, ..., x_N) }[/math], таких, что:

[math]\displaystyle{ \sum_{i \in N}{x_i} = v(N) }[/math]

и для любой коалиции [math]\displaystyle{ K \subset N }[/math] выполнено:

[math]\displaystyle{ \sum_{i \in K}{x_i} \ge v(K) }[/math],

где [math]\displaystyle{ v }[/math] — характеристическая функция игры.

Свойства

  • Эквивалентным является определение С-ядра кооперативной игры в терминах блокирования распределений выигрыша коалициями. Говорят, что коалиция K блокирует распределение выигрыша x, если найдётся другое распределение выигрыша y, такое, что
[math]\displaystyle{ \sum_{i \in K}{y_i} \le v(K) }[/math],

и для любого участника [math]\displaystyle{ i \in K }[/math] выполнено [math]\displaystyle{ y_i \ge x_i }[/math].

Тогда С-ядром кооперативной игры называется множество распределений выигрыша, которые не могут быть заблокированы ни одной коалицией.

  • С-ядро задаётся системой линейных уравнений и нестрогих линейных неравенств, в связи с чем оно является выпуклым многогранником.
  • С-ядро может быть пустым. Достаточные условия непустоты ядра были сформулированы Л.Шепли:

Теорема. Кооперативная игра с супермодулярной характеристической функцией имеет непустое ядро.

Необходимые и достаточные условия непустоты ядра были сформулированы О. Бондаревой и, позднее, Л. Шепли:

Теорема. Ядро кооперативной игры непусто тогда и только тогда, когда она сбалансирована.

  • Любое равновесие Вальраса принадлежит ядру, однако обратное неверно. Однако, при некоторых предположенях, если количество агентов в экономике стремится к бесконечности, ядро стремится ко множеству равновесий Вальраса (гипотеза Эджворта).

См. также

Источники

  • Бондарева О.Н. Некоторые применения методов линейного программирования к теории кооперативных игр // Проблемы кибернетики. — 1963. — Т. 10. — С. 119 - 140.
  • Kannai Y. The core and balancedness // Handbook of Game Theory with Economic Applications, Vol. I. — Amsterdam: Elsevier, 1992. — С. 355 - 395. — ISBN 978-0-444-88098-7.
  • Shapley L.S. On balanced sets and cores // Naval Research Logistics Quarterly. — 1967. — Т. 14. — С. 453 - 460.
  • Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр. — Санкт-Петербург: БХВ-Петербург, 2012. — С. 432. — ISBN 978-5-9775-0484-3.