Лампа чёрного света

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Включённая лампа «чёрного света» типа КЛЛ, видимое слабое фиолетовое свечение от проникающего частично через слой люминофора спектра свечения паров ртути в диапазоне 404 нм, свечение самого люминофора в диапазоне 350-370 нм невидимое

Ла́мпа «чёрного све́та», или лампа Ву́да (англ. Black light, Wood's light), лампа ультрафиоле́тового света — люминесцентная, дуговая или светодиодная лампа, излучающая длинноволновый (наиболее «мягкий», ближайший к видимому свету) ультрафиолет (UVA) с немного различным в зависимости от конкретной модели диапазоном и, в отличие от кварцевой лампы, имеет сравнительно слабое (вплоть до его отсутствия) видимое свечение и не испускает более агрессивные диапазоны ультрафиолета: UVB (ответственный, например, за загар и ожоги кожи от солнечного излучения) и UVC (ответственный за быстрое губительное влияние излучения кварцевых ламп на микроорганизмы, и на глаза и кожу человека; солнечный UVC не достигает поверхности земли)[1][2][3][4] .

Хотя многие другие типы ламп излучают ультрафиолет одновременно с видимым светом, лампа черного света необходима, когда требуется УФ-свет без видимого света, особенно при наблюдении флуоресценции, свойственной многим веществам при воздействии ультрафиолетового излучения. Лампа «черного света» используется для декоративных и художественных световых эффектов, диагностических и терапевтических применений в медицине, обнаружения веществ, специально помеченных флуоресцентными красителями (например в составе банкнот), охоты на минералы в любительской и профессиональной минералогии, обнаружения фальшивых денег, отверждения пластмассовых смол, привлечения насекомых и обнаружения утечек хладагентов.

Принцип действия

Спектр лампы «чёрного света». 1 — линия европия в тетраборате стронция, ~370 нм; 2 — линия ртути 404,656 нм
Варианты трубчатых ртутных газоразрядных ламп Т5 (16 мм): «чёрного света» 350-370 нм и кварцевая 253 нм со штырьковыми цоколями G5
Газоразрядная ртутная лампа «чёрного света» с цоколем E27

Изготавливаются такие лампы по тем же принципам, что и обычные люминесцентные, с тем лишь отличием, что в производстве ламп чёрного света используется особый люминофор и (или) вместо прозрачной стеклянной колбы используется колба из очень тёмного, почти чёрного, сине-фиолетового увиолевого стекла с добавками оксида кобальта или никеля. Такое стекло называется стеклом Вуда (англ. Wood's glass). Оно практически не пропускает видимый свет с длиной волны больше 400 нм.

Для того чтобы получить пик излучения лампы в диапазоне 368—371 нм, в качестве люминофора используются активированный европием борат стронция (SrB4O7:Eu2+), в то время как для получения излучения в диапазоне 350—353 нм используется активированный свинцом силикат бария (BaSi2O5:Pb2+)[5].

Лампа чёрного света может быть изготовлена и без применения специальных люминофоров. В этом случае колба является светофильтром или в ней установлен светофильтр, который пропускает только (преимущественно) ультрафиолетовое излучение. Для светофильтра обычно используется стекло Вуда.

Через такой светофильтр также проходит излучение, генерируемое разрядом в парах ртути, с длинами волн 365,0153 нм, 398,3931 нм, 404,6563 нм и 407,783 нм[6]. Именно такую конструкцию имели самые первые лампы чёрного света.

Выпускаются и светодиоды ультрафиолетового спектра свечения и светильники на их основе[7][8].

Применение

Модель с флюоресцирующим макияжем
Ловля насекомых на свет. Лампа ДРЛ (слева) и лампа чёрного света (справа)
Флюоресценция кореллы в УФ-свете

Применяется:

  • в криминалистике для обнаружения следов крови, мочи, спермы или слюны, которые флуоресцируют в свете лампы;
  • при установлении подлинности банкнот (многие современные банкноты имеют флуоресцирующие метки);
  • в медицине при определении дерматологических поражений, в частности при выявлении грибковых поражений и стригущего лишая (трихофития). Специальная лупа с ультрафиолетовой подсветкой в сочетании с таблицей позволяет определить данные о состоянии кожи по её свечению.
  • в индустрии развлечений (красители, флуоресцирующие в свете лампы, нередко используются при изготовлении клубных украшений или детских игрушек).
  • для отверждения полимеров. Несмотря на то, что для этих целей для максимального эффекта правильней использовать УФ-лампы с диапазоном длин волн 350...400нм, многие производители применяют лампы с чёрным стеклом. Расширенный диапазон длин волн 315...400нм у таких источников УФ-излучения также подходит для полимеризации с несколько увеличенным временем экспозиции.

Помимо этого, лампы с такими характеристиками нередко применяются при ловле насекомых на свет, нередко в сочетании с лампами, излучающими в видимой части спектра. Это связано с тем, что у большинства насекомых видимый спектральный диапазон смещён по сравнению с человеческим в коротковолновую часть спектра: насекомые не видят красную часть спектра, но видят мягкий ультрафиолетовый свет.

Ультрафиолетовые лампы используются в радиолюбительской технологии для засвечивания светочувствительных фоторезистов и стирания данных с микросхем некоторых ПЗУ.

Также лампы Вуда используются для организации ночных экспозиций зоопарков, которые позволяют увидеть жизнь ночных животных (они, как правило, не видят в ультрафиолетовом диапазоне). Человеческий глаз (после нескольких минут адаптации) позволяет видеть слабый свет и незначительную флуоресценцию окружающих предметов, что позволяет наблюдать за животными, которых люди обычно никогда не видят.

См. также

Примечания

  1. Kitsinelis, Spiros. The Right Light: Matching Technologies to Needs and Applications (англ.). — CRC Press, 2012. — P. 108. — ISBN 978-1439899311.
  2. Miller, Larry S.; McEvoy Jr., Richard T. Police Photography. — 6th. — Elsevier, 2010. — С. 202. — ISBN 978-1437755817.
  3. Booth, C. Methods in Microbiology. — Academic Press, 1971. — Т. 4. — С. 642. — ISBN 978-0080860305.
  4. Simpson, Robert S. Lighting Control: Technology and Applications (англ.). — Taylor & Francis, 2003. — P. 125. — ISBN 978-0240515663.
  5. Osram Archive.org
  6. Зайдель А. П., Прокофьев В. П., Райский С. М., Слитый В. А., Шрейдер Е. Я. Таблицы спектральных линий. — 4-е изд. — М.: Hаука, 1977.
  7. Гальчина Н. А., Коган Л. М., Сощин Н. П., Широков С. С., Юнович А. Э. Спектры электролюминесценции ультрафиолетовых светодиодов на основе p−n-гетероструктур InGaN/AlGaN/GaN, покрытых люминофорами Архивная копия от 10 февраля 2020 на Wayback Machine // «Физика и техника полупроводников». ISSN 0015-3222. 2007 г., том 41, № 9. — С. 1143-1148.
  8. Toshio Nishida, Tomoyuki Ban, Naoki Kobayashi High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors Архивная копия от 21 февраля 2022 на Wayback Machine / https://doi.org/10.1063/1.1580649 // Applied Physics Letters. 27.05.2003. Volume 82, Issue 22.

Внешние ссылки