Длина волны

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
График волны функции (например, физической величины) y, распространяющейся вдоль оси Оx, построенный в фиксированный момент времени (t = const). Длина волны λ может быть измерена как расстояние между парой соседних максимумов y (x) либо минимумов, либо как удвоенное расстояние между соседними точками, в которых y = 0

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе[1][2].

Длина́ волны́линии передачи) — расстояние в линии передачи, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π[3].

Длину волны можно также определить:

  • как расстояние, измеренное в направлении распространения волны, между двумя точками в пространстве, в которых фаза колебательного процесса отличается на [math]\displaystyle{ 2\pi }[/math];
  • как путь, который проходит фронт волны за интервал времени, равный периоду колебательного процесса;
  • как пространственный период волнового процесса.

Представим себе волны, возникающие в воде от равномерно колеблющегося поплавка, и мысленно остановим время. Тогда длина волны — это расстояние между двумя соседними гребнями волны, измеренное в радиальном направлении. Длина волны — одна из основных характеристик волны наряду с частотой, амплитудой, начальной фазой, направлением распространения и поляризацией. Для обозначения длины волны принято использовать греческую букву [math]\displaystyle{ \lambda }[/math], размерность длины волны — метр ([м]).

Как правило, длина волны используется применительно к гармоническому или квазигармоническому (например, затухающему или узкополосному модулированному) волновому процессу в однородной, квазиоднородной или локально однородной среде. Однако формально длину волны можно определить по аналогии и для волнового процесса с негармонической, но периодической пространственно-временной зависимостью, содержащей в спектре набор гармоник. Тогда длина волны будет совпадать с длиной волны основной (наиболее низкочастотной, фундаментальной) гармоники спектра.

Длина волны — пространственный период волнового процесса

Волна — колебательный процесс, развивающийся (распространяющийся) в пространстве и во времени, в связи с этим изменяющаяся в волновом процессе физическая величина является функцией пространственных координат и времени (то есть особого вида пространственно-временной функцией). Волновой процесс в частности может быть периодическим (например, гармоническим). По аналогии с периодом колебаний [math]\displaystyle{ T }[/math][с] (интервалом времени, за который периодический колебательный процесс повторяется и размерность которого — секунда), длину волны [math]\displaystyle{ \lambda }[/math] [м] можно рассматривать как пространственный период волнового процесса. Следует заметить, что круговой частоте колебания [math]\displaystyle{ \omega = 2\pi f = 2\pi/T }[/math] [радиан/с], показывающей, на сколько радиан изменится фаза колебания за 1 с в фиксированной точке (в множестве точек если твердое тело), соответствует «пространственная круговая частота» [math]\displaystyle{ k = 2\pi/\lambda }[/math] [радиан/м], называемая волновым числом и показывающая, на сколько радиан отличаются фазы колебательного процесса в двух точках пространства, расположенных вдоль направления распространения волны на расстоянии 1 м друг от друга. При этом очевидно, что фазы колебательного процесса в двух таких точках, расположенных друг от друга на расстоянии в [math]\displaystyle{ \lambda }[/math] [м], отличаются ровно на [math]\displaystyle{ 2\pi }[/math].

Связь с частотой

Получить соотношение, связывающее длину волны с фазовой скоростью [math]\displaystyle{ v }[/math] и частотой [math]\displaystyle{ f }[/math] можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду [math]\displaystyle{ T }[/math] колебаний, поэтому

[math]\displaystyle{ \lambda = vT = \frac{v}{f} = \frac{2\pi v}{\omega}. }[/math]

Для электромагнитных волн в вакууме скорость [math]\displaystyle{ v }[/math] в этой формуле равна скорости света (299 792 458 м/с), и длина волны [math]\displaystyle{ \lambda = \frac{299\,792\,458~\text{m/s}}{f} }[/math]. Если значение [math]\displaystyle{ f }[/math] подставить в герцах, то [math]\displaystyle{ \lambda }[/math] будет выражена в метрах.

Радиоволны делят на диапазоны по значениям длин волн, например, 10…100 м — декаметровые (короткие) волны, 1…10 м — метровые, 0.1…1,0 м — дециметровые и т. п. Механизмы и условия распространения радиоволн, степень проявления эффекта дифракции, отражающие свойства объектов, предельная дальность радиосвязи и радиолокации сильно зависят от длины волны. Как правило, габаритные размеры антенн сравнимы либо (справедливо всегда для антенн направленного действия) превышают рабочую длину волны радиоэлектронного средства. Магнитная антенна средневолнового радиоприёмника имеет габарит на порядки меньше длины волны, и при этом, тем не менее, обладает пространственной селективностью.

Длина волны в среде

В оптически более плотной среде (слой выделен тёмным цветом) длина электромагнитной волны сокращается. Синяя линия — распределение мгновенного (t = const) значения напряжённости поля волны вдоль направления распространения. Изменение амплитуды напряжённости поля, обусловленное отражением от границ раздела и интерференцией падающей и отражённых волн, на рисунке условно не показано.

Длина электромагнитной волны в среде короче, чем в вакууме:

[math]\displaystyle{ \lambda = \frac{c}{n\nu}, }[/math]
где [math]\displaystyle{ n=\sqrt{\varepsilon\mu} \gt 1 }[/math] — показатель преломления среды;
[math]\displaystyle{ \varepsilon }[/math] — относительная диэлектрическая проницаемость среды;
[math]\displaystyle{ \mu }[/math] — относительная магнитная проницаемость среды.

Величины [math]\displaystyle{ n }[/math], [math]\displaystyle{ \mu }[/math] и [math]\displaystyle{ \varepsilon }[/math] могут существенно зависеть от частоты [math]\displaystyle{ \nu }[/math] (явление дисперсии). Поскольку для большинства сред в радиочастотном диапазоне [math]\displaystyle{ \mu\approx1 }[/math] (для диэлектриков [math]\displaystyle{ \mu=1 }[/math], для ферромагнетиков с ростом частоты [math]\displaystyle{ \mu\rightarrow1 }[/math]), то в инженерной практике используют величину [math]\displaystyle{ 1/\sqrt{\varepsilon}\lt 1 }[/math], которую называют коэффициентом укорочения. Она равна отношению длины волны в среде к длине волны в вакууме. Например, для полиэтилена (используется в радиочастотном диапазоне как изоляционный материал с малыми потерями) [math]\displaystyle{ \varepsilon }[/math] = 2,56, и коэффициент укорочения [math]\displaystyle{ 1/\sqrt{\varepsilon} }[/math] = 1/1,6 = 0,625.

Напротив, длина электромагнитной волны (поперечномагнитной, поперечноэлектрической) в волноводах может быть не только больше, чем в среде с тем же значением [math]\displaystyle{ \varepsilon }[/math], но и больше, чем вакууме, поскольку фазовая скорость электромагнитной волны в волноводе превышает скорость электромагнитной волны в среде с тем же [math]\displaystyle{ \varepsilon }[/math].

Волны де Бройля

Волнам де Бройля также соответствует определённая длина волны. Частице с энергией [math]\displaystyle{ E }[/math] и импульсом [math]\displaystyle{ p }[/math], соответствуют:

  • частота: [math]\displaystyle{ \nu = \frac{E}{h}, }[/math]
  • длина волны: [math]\displaystyle{ \lambda = \frac{h}{p}, }[/math]
где [math]\displaystyle{ h }[/math] — постоянная Планка.

Примеры

Видеоурок: длина волны

Приближённо, с погрешностью около 0,07 % рассчитать длину радиоволны в свободном пространстве можно так: 300 000 км/с делим на частоту в килогерцах, получаем длину волны в метрах. Другой способ — запомнить какую-нибудь удобную пару [math]\displaystyle{ f }[/math][math]\displaystyle{ \lambda }[/math], например, частоте 100 МГц соответствует длина волны 3 м; тогда оценив, во сколько раз требуемая частота выше или ниже 100 МГц, можно определить длину волны. Например, 1 МГц ниже 100 МГц в 100 раз, значит 1 МГц ↔ 3 м × 100 = 300 м

Примеры характерных частот и длин волн: частоте 50 Гц (частота тока в электросети) соответствует длина радиоволны 6000 км; частоте 100 МГц (радиовещательный FM-диапазон) — 3 м; 900 (1800) МГц (мобильные телефоны) — 33,3 (16,7) см; 2,4 ГГц (Wi-Fi) — 12,5 см; 10 ГГц (бортовые радиолокационные станции системы управления вооружением современных самолётов-истребителей) — 3 см. Видимый свет представляет собой электромагнитное излучение c длинами волн от 380 до 780 нм[4].

Примечания

  1. Колебания и волны // Физика : Учебник для 11 класса общеобразовательных учреждений / Г. Я. Мякишев, Б. Б. Буховцев. — 12-е изд. — М. : Просвещение, 2004. — С. 121. — 336 с. — 50 000 экз. — ISBN 5-09-013165-1.
  2. Определение не вполне корректно, поскольку (1) в одинаковой фазе колебания происходят и на фронте волны, и расстояние между точками на фронте может быть произвольным, в том числе и нулевым; (2) чтобы расстояние между двумя точками равнялось длине волны, колебание должно происходить не в одинаковой фазе, а со сдвигом фаз в [math]\displaystyle{ 2\pi }[/math], и расположены точки должны быть вдоль линии распространения
  3. ГОСТ 18238-72. Линии передачи сверхвысоких частот. Термины и определения.
  4. ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин Архивная копия от 23 марта 2013 на Wayback Machine

Литература