Десятичная система счисления
Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев на руках у человека.
Определение
Один десятичный разряд в десятичной системе счисления иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления соответствует один десятичный триггер.
Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:
- [math]\displaystyle{ x = \pm \sum_{k=0}^{n-1} a_k 10^k }[/math], где [math]\displaystyle{ \ a_k }[/math] — это целые числа, называемые цифрами, удовлетворяющие неравенству [math]\displaystyle{ 0 \leq a_k \le 9. }[/math]
Обычно для ненулевого числа x требуют, чтобы старшая цифра [math]\displaystyle{ a_{n-1} }[/math] в десятичном представлении x была также ненулевой.
Например, число сто три представляется в десятичной системе счисления в виде:
- [math]\displaystyle{ 103 = 1 \cdot 10^{2} + 0 \cdot 10^{1} + 3 \cdot 10^{0}. }[/math]
С помощью n позиций в десятичной системе счисления можно записать целые числа от 0 до [math]\displaystyle{ 10^n-1 }[/math], то есть, всего [math]\displaystyle{ 10^n }[/math] различных чисел.
Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:
- [math]\displaystyle{ a_{n-1} a_{n-2}\dots a_{1} a_{0},a_{-1} a_{-2}\dots a_{-(m-1)} a_{-m} = \sum_{k=-m}^{n-1} a_k 10^k, }[/math]
где n — число разрядов целой части числа, m — число разрядов дробной части числа.
Двоично-десятичное кодирование
В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Двоично-десятичные числа требуют большего количества битов для своего хранения[1]. Так, четыре двоичных разряда имеют 16 состояний, и при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются[2].
Таблица сложения в десятичной системе счисления
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Таблица умножения в десятичной системе счисления
× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
3 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
4 | 0 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
6 | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
7 | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
8 | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
9 | 0 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |
История
Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления).
В другой великой цивилизации — вавилонской с её шестидесятеричной системой — за две тысячи лет до н. э. внутри шестидесятеричных разрядов использовалась позиционная десятичная система счисления с единичным кодированием десятичных цифр[3]. Египетская десятичная система повлияла на аналогичную систему в первых европейских системах письма, таких как критские иероглифы, линейное письмо А и линейное письмо Б.
Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.
Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось иное название — «арабская» (арабские цифры).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[4], так и не числовых записей в двоичной системе кодирования[5]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[6]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта, как двойная запись[7].
Преимущества десятичной позиционной системы
Реализованная с помощью индоарабских цифр десятичная позиционная система счисления постепенно вытеснила римские цифры и другие непозиционные системы нумерации благодаря множеству несомненных преимуществ[8].
- Индийская запись чисел компактнее римской и позволяет быстро сравнивать разные числа по величине.
- При расчётах на абаке можно одновременно записывать числа и проводить расчёты.
- Вычисления стало возможно проводить без абака, на бумаге. Появились новые, более простые методы умножения и деления, специально рассчитанные на индоарабские цифры.
- Вычислительная математика и математика вообще получили мощный импульс к развитию. Например, трудно представить изобретение логарифмов без индоарабских цифр.
- Появилась возможность создания счётных машин.
Наименование степеней десяти
В стандартной десятичной системе счисления для именования больших чисел используются именные названия степеней тысячи, такие как миллион (1 000 000) и миллиард (1 000 000 000). Промежуточные степени десяти образуются прибавлением слов десять или сто, например десять миллионов (10 000 000) и сто миллиардов (100 000 000 000); другие промежуточные количества образуются прибавлением к именным названиям степеней тысячи числительных до тысячи, например сто двадцать семь миллионов (127 000 000). Для биллиона и следующих числительных есть два возможных значения: в короткой шкале каждая очередная именованная единица содержит 1000 предыдущих, а в длинной — миллион; так, биллион, следующий за миллионом, может означать как 109, так и 1012.
Степени десяти в Индии
В Индии используется альтернативный способ именованию степеней десяти, основанный на устаревшей ведической системе счисления с основанием 100, согласно которой собственные названия имеют 103, 105 и следующие степени десяти через один, а промежуточные образуются прибавлением числительного десять. Система была официально утверждена в 1987 году и исправлена в 2002 году[9].
Число | Ведическая | Индийская | Стандартная |
---|---|---|---|
103 | хазар | хазар | тысяча |
104 | десять хазар | десять хазаров | десять тысяч |
105 | лакх | лакх | сто тысяч |
106 | ниют | десять лакхов | миллион |
107 | крор | крор | десять миллионов |
108 | рибурдх | десять кроров | сто миллионов |
109 | вранд | араб | миллиард |
1010 | кхараб | десять арабов | десять миллиардов |
1011 | ни-кхараб | кхараб | сто миллиардов |
1012 | шанкх | десять кхарабов | триллион/биллион |
При записи чисел в индийской системе разделители размещаются в соответствии с этими наименованиями степеней: например, число, записываемое в стандартной системе как 50 801 592, в индийской будет иметь вид будет 5 08 01 592[10]. Названия лакх и крор используются в индийском диалекте английского языка (lakh, crore), хинди (लाख lākh, करोड़ karod) и других языках Южной Азии.
Применение
См. также
- Приставки СИ — десятичные приставки.
- Именные названия степеней тысячи
- Декатрон
Примечания
- ↑ «AS-Level Computing» 5th edition — P. M. (Pat M.) Heathcote, S. Langfield — 2004—224 pages — Page 18: «A disadvantage of using BSD is that more bits are required to store a number than when using pure binary.» [1] Архивная копия от 22 апреля 2022 на Wayback Machine ISBN 1-904467-71-7
- ↑ Schaum’s outline of theory and problems of essential computer mathematics By Seymour Lipschutz, McGraw-Hill. 1987. «Remark: Any 4-bit code allows 2^4 = 16 combinations. Because the 4-bit BCD codes need only 10 of the combinations … 6 combinations remains available» [2] Архивная копия от 22 апреля 2022 на Wayback Machine ISBN 0-07-037990-4
- ↑ Знакомство с системами счисления (недоступная ссылка). Дата обращения: 8 ноября 2009. Архивировано 1 июня 2017 года.
- ↑ Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3.
- ↑ Experts 'decipher' Inca strings . Архивировано 18 августа 2011 года.
- ↑ Carlos Radicati di Primeglio, Gary Urton. Estudios sobre los quipus. - стр.49 . Дата обращения: 5 сентября 2018. Архивировано 9 июля 2021 года.
- ↑ Dale Buckmaster. The Incan Quipu and the Jacobsen Hypothesis (англ.) // Journal of Accounting Research[англ.] : journal. — 1974. — Vol. 12, no. 1. — P. 178—181.
- ↑ Меннингер, 2011, с. 508—515.
- ↑ S. V. Gupta. Units of Measurement: Past, Present and Future. International System of Units. — Springer Science & Business Media, 2009. — С. 12—13. — 158 с.
- ↑ Knowing our Numbers . Department Of School Education And Literacy. National Repository of Open Educational Resources. Дата обращения: 13 февраля 2016. Архивировано 16 февраля 2016 года.
Литература
- Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — С. 57—59. — 509 с. — ISBN 5-17-009554-6.
- Меннингер К. История цифр. Числа, символы, слова. — М.: ЗАО Центрполиграф, 2011. — 543 с. — ISBN 9785952449787.