Центральная симметрия

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
(перенаправлено с «Центр симметрии»)

Центра́льной симметри́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через [math]\displaystyle{ Z_A }[/math], в то время как обозначение [math]\displaystyle{ S_A }[/math] можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Другие названия этого преобразования — симметрия с центром A. Центральная симметрия в планиметрии является частным случаем поворота, точнее, является поворотом на 180 градусов.

Векторная запись

  • Пусть G — оператор центральной симметрии, точка A задана радиус-вектором [math]\displaystyle{ \vec{r_A} }[/math], а преобразовываемая точка задается радиус-вектором [math]\displaystyle{ \vec{x} }[/math]. Тогда имеет место следующая формула:
    [math]\displaystyle{ G(\vec{x}) = 2\vec{r_A} - \vec{x} }[/math]

Связанные определения

  • Если фигура переходит в себя при симметрии относительно точки [math]\displaystyle{ A }[/math], то [math]\displaystyle{ A }[/math] называют центром симметрии этой фигуры, а сама фигура называется центрально-симметричной.

Свойства

Композиция двух центральных симметрий.
  • В n-мерном пространстве если преобразование R является последовательным отражением относительно n взаимно перпендикулярных гиперплоскостей, то R - центральная симметрия относительно общей точки этих гиперплоскостей. Как следствие:
    • В чётномерных пространствах центральная симметрия сохраняет ориентацию, а в нечётномерных — не сохраняет.
  • Центральную симметрию можно представить также как гомотетию с центром A и коэффициентом −1 ([math]\displaystyle{ H_A^{-1} }[/math]).
  • На плоскости (в 2-мерном пространстве) симметрия с центром A представляет собой поворот на 180° с центром A ([math]\displaystyle{ R_A^{180} }[/math]). Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию.
  • Центральную симметрию в трёхмерном пространстве можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.
  • В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей (перпендикулярных в 4-мерном смысле, см. Перпендикулярность плоскостей в 4-мерном пространстве), проходящих через центр симметрии.

См. также

Литература