Сферическая теорема Пифагора

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Прямоугольный сферический треугольник с гипотенузой c, катетами a и b и прямым углом C.

Сферическая теорема Пифагора — теорема, устанавливающая соотношение между сторонами прямоугольного сферического треугольника.

Формулировка и доказательство

Сферическая теорема Пифагора формулируется следующим образом[1]:

Косинус гипотенузы прямоугольного сферического треугольника равен произведению косинусов его катетов.

Рисунок к доказательству сферической теоремы Пифагора.

Доказательство проведём с помощью трёхгранного угла[1] OA1B1C1 со сторонами (лучами) OA1, OB1, OC1 и вершиной в точке O, плоские углы A1OC1 и C1OB1 которого равны катетам b и a данного треугольника, плоский угол A1OB1 равен его гипотенузе c, двугранный угол между гранями A1OC1 и C1OB1 равен 90 градусов, а остальные два двугранных угла равны соответствующим углам сферического прямоугольного треугольника. Этот трёхгранный угол пересечен плоскостью A1B1C1, перпендикулярной лучу OB1. Тогда углы A1C1O и A1C1B1 будут прямыми.

Заметим, что

[math]\displaystyle{ \frac {OB_1}{OA_1} = \cos \angle A_1OB_1 = \cos c, }[/math]
[math]\displaystyle{ \frac {OC_1}{OA_1} = \cos \angle A_1OC_1 = \cos b, }[/math]
[math]\displaystyle{ \frac {OB_1}{OC_1} = \cos \angle C_1OB_1 = \cos a. }[/math]

Отсюда

[math]\displaystyle{ \cos c = \frac {OB_1}{OA_1} = \frac {OB_1}{OC_1} \cdot \frac {OC_1}{OA_1} = \cos a \cos b. }[/math]

Что и требовалось доказать.

Если считать, что сферическая теорема косинусов уже доказана, формулу для сферической теоремы Пифагора можно сразу получить из неё, записав сферическую теорему косинусов для гипотенузы данного прямоугольного сферического треугольника и просто подставив в получившееся выражение угол 90 градусов, косинус которого равен нулю.

Следствия и применение

При радиусе сферы, стремящемся к бесконечности, сферическая теорема Пифагора переходит в теорему Пифагора планиметрии. Поэтому, поскольку радиус Земли велик, при небольших расстояниях прямоугольные треугольники на поверхности Земли (например, используемые для измерения расстояний и углов на местности) практически подчиняются теореме Пифагора планиметрии[2], тогда как для больших расстояний, сравнимых с радиусом Земли, уже необходимо применять сферическую теорему Пифагора.

С применением сферической теоремы Пифагора можно получить формулы для разности долгот и расстояния между точками земной поверхности, а, следовательно, и соответствующие формулы для расстояний и координат точек на небесной сфере.

Из сферической теоремы Пифагора следует, что в прямоугольном сферическом треугольнике количество сторон, меньших 90 градусов, нечётно, а больших — чётно[1]. Поэтому если оба катета прямоугольного сферического треугольника больше 90 градусов, то его гипотенуза меньше 90 градусов, то есть в этом случае гипотенуза короче каждого из двух катетов — положение, невозможное для прямоугольного треугольника на плоскости.

История

Сферическая теорема Пифагора была известна ещё Ал-Бируни, который вместе с тем не знал сферической теоремы косинусов, поэтому применил сферическую теорему Пифагора и теорему синусов для решения как минимум двух задач: определения разности долгот двух пунктов на поверхности Земли по их широтам и расстоянию между ними и определения расстояния между двумя пунктами на поверхности Земли по их широтам и долготам[3]:81.

См. также

Примечания

  1. 1,0 1,1 1,2 Степанов Н.Н. Сферическая теорема Пифагора // Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948. — С. 42—44. — 154 с.
  2. John McCleary. Geometry from a differentiable viewpoint. — Cambridge University Press, 1994. — С. 6. — 308 с. Архивная копия от 22 января 2021 на Wayback Machine
  3. Розенфельд Б.А., Рожанская М.М. Астрономический труд Ал-Бируни «Канон Мас'уда» // Историко-астрономические исследования. — М.: Наука, 1969. — Вып. X. — С. 63—96. Архивировано 10 сентября 2010 года.