Перейти к содержанию

Плавление

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Фазовые переходы первого рода на фазовой диаграмме
Фазовая диаграмма воды.
Плавлению (и кристаллизации) соответствует ветвь левее и выше тройной точки,
сублимации — ветвь левее и ниже тройной точки.

Шаблон:МехПрОтказов

Плавле́ние — это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления.

Способность плавиться относится к физическим свойствам вещества[1]

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ — углерод (по разным данным 3500 — 4500 °C[2]) а среди произвольных веществ — карбид тантала-гафния Ta4HfC5 (3942 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путём сублимации сразу переходят в газообразное состояние.

Плавление смесей и твёрдых растворов

У сплавов, как правило, нет определённой температуры плавления; процесс их плавления происходит в конечном диапазоне температур. На диаграммах состояния «температура — относительная концентрация» имеется конечная область сосуществования жидкого и твёрдого состояния, ограниченная кривыми ликвидуса и солидуса. Аналогичная ситуация имеет место и в случае многих твёрдых растворов.

Фиксированной температуры плавления нет также у аморфных тел; они переходят в жидкое состояние постепенно, размягчаясь при повышении температуры.

Кинетика плавления

Технически плавление вещества осуществляется с помощью подвода тепловой энергии снаружи образца (внешний нагрев, например, в термической печи) или непосредственно во всём его объёме (внутренний нагрев, например, резистивный нагрев при пропускании тока через образец, или индукционный нагрев в высокочастотном электромагнитном поле). Способ плавления не влияет на основные характеристики процесса — температуру и скрытую теплоту плавления, но определяет внешнюю картину плавления, например, появление квази-жидкого слоя на поверхности образца при внешнем нагреве.

Считается, что плавление характеризуется потерей дальнего ориентационного межатомного порядка в кристалле с переходом к «жидкоподобному» или «газоплотному» беспорядку.

Природа плавления

Поясним вначале, почему при некоторой температуре тело предпочитает разорвать часть межатомных связей и из упорядоченного состояния (кристалл) перейти в неупорядоченное (жидкость).

Как известно из термодинамики, при фиксированной температуре тело стремится минимизировать свободную энергию [math]\displaystyle{ F = E - TS }[/math]. При низких температурах второе слагаемое (произведение температуры и энтропии) несущественно, и в результате всё сводится к минимизации обычной энергии [math]\displaystyle{ E }[/math]. Состояние с минимальной энергией — это кристаллическое твёрдое тело. При повышении температуры, второе слагаемое становится всё важнее, и при некоторой температуре оказывается выгоднее разорвать некоторые связи. При этом обычная энергия [math]\displaystyle{ E }[/math] слегка повысится, но при этом сильно возрастет и энтропия, что в результате приведёт к понижению свободной энергии.

Динамика плавления

Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи
Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[3]

Изначально, в умозрительном, то есть не количественном, представлении считалось, что в динамике плавление происходит следующим образом. При повышении температуры тела увеличивается амплитуда тепловых колебаний его молекул, и время от времени возникают структурные дефекты решётки в виде перескоков атомов, роста дислокаций и других нарушений кристаллической решетки[4]. Каждый такой дефект, возникновение и перемещение дислокаций требуют определённого количества энергии, поскольку сопровождается разрывом некоторых межатомных связей. Стадия рождения и накопления дефектов называется стадией предплавления. Кроме того, на этой стадии, как правило, при внешнем нагреве возникает квази-жидкий слой на поверхности тела. Считается, что при некоторой температуре концентрация дефектов становится столь большой, что приводит к потере ориентационного порядка в образце, то есть плавлению.

Однако, в связи с тем, что механизм термодеструкции кристалла за счёт образования дефектов и роста дислокаций, протекающей в широком диапазоне температур, не приводит к фазовому превращению 1-го рода, то есть к скачку термодинамических характеристик вещества в конкретной, фиксированной для каждого вещества температурной точке, то Линдеман[5] развил простые представления о ходе процесса плавления, согласно которым амплитуда колебания частиц в точке плавления увеличивается настолько, что становится сравнимой с межатомным расстоянием в кристаллической решётке и приводит к разрушению решётки и потере ориентационного межатомного порядка. Фактически этот «фактор плавления» является основой большинства моделей с определяющей ролью отталкивающей части потенциала парного взаимодействия и наложением условий перехода от порядка к «жидкоподобному» или «газоплотному» беспорядку, рассчитываемых методами Монте-Карло и молекулярной динамики[6][7][8]. Однако, было установлено[9], что в точке плавления среднеквадратичное смещение атомов из состояния равновесия составляет всего около 1/8 межатомного расстояния, что исключает модель Линдемана, то есть соударение атомов как «фактор плавления». При этом энергия атомов оказывается существенно ниже потенциальной энергии атомизации кристаллической решётки, т.е. вещество остаётся в конденсированном (связанном) состоянии.

Теоретические исследования В. Андреева[10][11] показали, что динамика плавления кристаллического тела, как фазового превращения 1-го рода, определяется (в отличие от модели накопления дефектов и дислокаций и модели Линдемана) «катастрофичеким» (crash — [крэш]) конформационным преобразованием (инвертированием) структуры группы атомов при их тепловых колебаниях с амплитудами, меньшими межатомных расстояний в решетке, сопровождаемым разрушением межатомной связи при преодолении потенциального барьера инвертирования в фиксированной температурной точке с затратой постоянной величины энергии, ниже энергии атомизации решетки, и равной удельной теплоте плавления. Этот механизм приводит к подтверждаемой экспериментально кластерной структуре связанного (конденсированного) жидкого состояния с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.

Плавление в двумерных системах

В двумерных или квази-двумерных системах кристалл является гораздо более шатким объектом, чем в трёхмерном случае, а именно у двумерного кристалла нет дальнего позиционного порядка. Для сравнения, в одномерном случае кристалл при конечной температуре вообще не может быть стабильным.

Как выяснилось, это приводит к тому, что плавление двумерного кристалла происходит в два этапа. Вначале кристалл переходит в так называемую гексатическую фазу, в которой теряется ближний позиционный порядок, но сохраняется ориентационный, а затем происходит потеря и ориентационного порядка и тело становится жидким.

Нетермическое плавление

В случае сверхбыстрого облучения ковалентных материалов фемтосекундными лазерными импульсами может наблюдаться так называемое "нетермическое плавление". Так как фотоны лазерного импульса поглощаются электронами твердого тела, это приводит к короткоживущему двухтемпературному состоянию, в котором электронная подсистема материала может иметь сверхвысокие температуры, тогда как атомная подсистема еще не успевает нагреться. В таком случае электронные связи, образующие межатомный потенциал удерживающий атомы в своих положениях равновесия, могут изменяться или полностью разрываться, приводя к плавлению даже при комнатной температуре атомов[12].

Примечания

  1. С. Т. Жуков Химия 8-9 класс, Глава 1. Основные представления и понятия химии. Дата обращения: 18 января 2010. Архивировано 9 мая 2007 года.
  2. Разброс экспериментальных данных связан, по видимому, с фазовым переходом графит-карбин и различной скоростью нагрева при измерениях. Климовский И. И., Марковец В. В. Влияние фазового перехода графит-карбин на излучательную способность графитовых образцов при их нагревании до температур 3000 K и более // International Scientific Journal for Alternative Energy and Ecology. — 2007. — № 6 (50). — С. 50—59. Архивировано 26 октября 2015 года.
  3. Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,. — 2012.
  4. Мейер К. Физико-химическая кристаллография, М., «Металлография», 1972
  5. Lindemann F. A. // Phys.Z., 1910, v.11, p.609
  6. Wood W. W., Jacobson J. D. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres // J. Chem. Phys.. — 1957. — № 27. — С. 1207. — doi:10.1063/1.1743956.
  7. Alder B. J., Wainwright T. E. Phase Transition in Elastic Disks // Phys. Rev.. — 1962. — № 127. — С. 359. — doi:10.1103/PhysRev.127.359.
  8. Hoover W. G., Gray S. G., Johnson K. W. Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials // J. Chem. Phys.. — 1971. — № 55. — С. 1128. — doi:10.1063/1.1676196.
  9. Пайнс Д. Элементарные возбуждения в твёрдых телах. М., Мир, 1965.
  10. Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // Журнал структурной химии. — 2001. — № 3. — С. 486—495.
  11. Андреев В. Д. «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35—40.
  12. (2015) «Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation». Physical Review B 91: 054113. doi:10.1103/PhysRevB.91.054113.

Ссылки