Переход Мотта

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Мезоскопическая физика

Переход Мотта — резкое изменение электропроводности твердого тела при увеличении концентрации носителей заряда, обусловленная экранированием кулоновского взаимодействия между электронами и дырками.

Свойства значительного числа соединений переходных металлов плохо описываются зонной теорией в связи с межэлектронным взаимодействием. Для некоторых из этих материалов свойствен резкий рост электропроводности при увеличении температуры. Возможное объяснение этого явления заключается в том, что увеличение температуры приводит к изменению периода кристаллической решетки, при котором локализованные состояния электронов становятся делокализованными.

Невилл Фрэнсис Мотт предложил объяснение этого явления, связаного с экранировкой кулоновского взаимодействия. При малой концентрации носителей заряда возбужденые в нём электрон и дырка образуют экситон с энергией связи

[math]\displaystyle{ V = - \frac{e^2} {2\varepsilon a_0} }[/math],

где e — заряд электрона, [math]\displaystyle{ \varepsilon }[/math] — диэлектрическая проницаемость, [math]\displaystyle{ a_0 }[/math] — радиус Бора для экситона. Экситон — нейтральная частица, поэтому возбуждение не приводит к возникновению проводимости.

При увеличении концентрации носителей заряда кулоновское взаимодействие экранируется. Когда радиус экранирования становится меньше радиус Бора для экситона, электрон и дырка перестают быть связанными, поэтому могут свободно перемещаться, давая вклад в проводимость. По оценкам Мотта такой переход происходит при

[math]\displaystyle{ n^{1/3} a_0 \gt \frac{1}{4}\left( \frac{\pi}{3} \right)^{1/3} }[/math],

где n — концентрация электронов. Это равенство эквивалентно условию [math]\displaystyle{ r_s \lt 2,5 }[/math], где [math]\displaystyle{ r_s }[/math] — среднее расстояние между электронами.

Переход Мотта не является единственной моделью перехода металл-полупроводник. Во многих случаях справедливость той или иной модели до сих пор не ясна.

Литература