Контравариантный вектор

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Контравариа́нтным ве́ктором обычно называют совокупность (столбец) координат вектора в обычном базисе (то есть его контравариантных координат) или 1-формы в том же базисе, не являющимся, правда, для неё естественным. Контравариантный вектор в дифференциальной геометрии и смежных с ней физических концепциях — это вектор касательного пространства.

  • Это определение согласовано с определением контравариантного тензора валентности 1 (см. Тензор), каковым и является контравариантный вектор (вектор касательного пространства) в качестве частного случая тензора.

Основные сведения

Контравариантные координаты принято записывать с верхним индексом, а также — в матричной записи — в виде вектора-столбца (в отличие от записи с нижним индексом и вектора-строки для ковариантных координат и соответственно «ковариантного вектора»).

Образец контравариантного вектора — это вектор смещения, записанный в виде набора приращений координат: [math]\displaystyle{ \ dx^i }[/math].

Любой набор чисел, преобразующийся при любой замене координат так же, как [math]\displaystyle{ \ dx^i }[/math] (новый набор через ту же матрицу выражаются через старый), представляет контравариантный вектор.


Следует заметить, что, если определен невырожденный метрический тензор, то «ковариантный вектор» и «контравариантный вектор» являются просто разными представлениями (записями в виде набора чисел) одного и того же геометрического объекта — обычного вектора или 1-формы. То есть один и тот же вектор может быть записан как ковариантный (то есть набор ковариантных координат) и контравариантный (то есть набор контравариантных координат). То же можно сказать об 1-форме. Преобразование одного представления в другое осуществляется просто свёрткой с метрикой:

[math]\displaystyle{ \ v_i = g_{ij} v^j }[/math]
[math]\displaystyle{ \ v^i = g^{ij} v_j }[/math]

(здесь и ниже подразумевается суммирование по повторяющемуся индексу, по правилу Эйнштейна).

Содержательно же векторы и 1-формы различают лишь по тому, какое из представлений для них естественно. Так, для 1-форм естественно разложение по дуальному базису, как например для градиента, так как их естественная свертка (скалярное произведение) с обычным вектором (например, смещением) осуществляется без участия метрики, просто суммированием перемноженных компонент. Для обычных же векторов, таких как dx i — естественно разложение по главному базису, так как они свертываются с другими обычными векторами, такими, как вектор смещения по пространственным координатам, с участием метрики. Например, скаляр [math]\displaystyle{ \ d\phi = (\partial_i \phi)dx^i }[/math] — получается (как полный дифференциал) свертыванием без участия метрики ковариантного вектора [math]\displaystyle{ \ \partial_i \phi }[/math], являющегося естественным представлением 1-формы градиента, подействовавшей на скалярное поле, с контравариантным вектором [math]\displaystyle{ \ dx^i }[/math], являющимся естественным представлением обычного вектора смещения по координатам; тогда как сам с собой [math]\displaystyle{ \ dx^i }[/math] свертывается с помощью метрики: [math]\displaystyle{ \ (dx)^2 = g_{ij} dx^i dx^j }[/math], что находится в полном согласии с тем, что он контравариантный.

Если речь идет об обычном физическом пространстве, простым признаком ковариантности-контравариантности вектора является то, как свертывается его естественное представление с набором координат пространственного перемещения [math]\displaystyle{ \ dx^i }[/math], являющегося образцом контравариантного вектора. Те, что свертываются с [math]\displaystyle{ \ dx^i }[/math] посредством простого суммирования, без участия метрики, — это ковариантный вектор (1-форма), что же с участием метрики — это контравариантный вектор. Если же пространство и координаты настолько абстрактны и замечательны, что нет способа различить главный и дуальный базис, кроме как произвольным условным выбором, то содержательное различие между ковариантными и контравариантными векторами пропадает, или становится также чисто условным.

Вопрос о том, является ли именно то представление, в каком мы видим объект, естественным для него, затронут уже чуть выше. Естественным для обычного вектора является контравариантное представление, для 1-формы же — ковариантное.

  • Замечание: все эти термины применяются обычно в тензорной алгебре; подразумевается что на пространстве, в котором существуют описанные объекты (или на многообразии, в касательном пространстве которого они существуют) есть метрика [math]\displaystyle{ g_{ij} }[/math] (хотя бы псевдориманова).

Литература

См. также