W-бозон

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
W±, 0-бозон (W±, 0)
Состав фундаментальная частица
Семья бозон
Группа калибровочный бозон
Участвует во взаимодействиях гравитационное[1],
слабое,
электромагнитное
Античастица W+ для W-
W0 сам себе
Кол-во типов 3
Масса 80,385±0,015 ГэВ/c2[2]
Время жизни ~3⋅10−25 с
Теоретически обоснована Глэшоу, Вайнберг, Салам (1968)
Обнаружена совместные эксперименты UA1 и UA2, 1983
Квантовые числа
Электрический заряд W±: ±1 e
W0: 0
Цветной заряд 0
Барионное число 0
Спин 1 ħ
Кол-во спиновых состояний 3
Слабый гиперзаряд 0

W-бозон — фундаментальная частица-переносчик слабого взаимодействия. Название происходит от первой буквы английского слова Weak (слабый). Его открытие в 1983 году в ЦЕРНе считается одним из самых главных успехов стандартной модели

Основные свойства

Мы можем наблюдать 2 основных типа W-бозона — с положительным и отрицательным электрическим зарядом. Однако теорией электрослабого взаимодействия предсказывается 3 W-бозона — с положительным электрическим зарядом, с отрицательным и нулевым, но невозможно наблюдать нейтральный бозон напрямую, потому что, смешиваясь с B-бозоном, он образует фотон и Z-бозон.

Масса W-бозона почти в 85 раз больше, чем масса протона, и примерно равна 80,4 ГэВ/c2. Масса бозона очень важна для понимания слабого взаимодействия, потому что большая масса ограничивает радиус воздействия.

Ввиду наличия у бозона электрического заряда он может изменять ароматы и поколения кварков, а также превращать лептоны в соответствующие антинейтрино и обратно. Именно это свойство делает возможными бета-распад нейтрона, распад мюона и тау, а также распад тяжёлых кварков.

[math]\displaystyle{ \mu^{-}\rightarrow\nu_{\mu}+W^{-}\rightarrow\nu_{\mu}+e^{-}+\bar{\nu_{e}} }[/math]

[math]\displaystyle{ n^{0}\rightarrow p^{+}+e^{-}+\bar{\nu_{e}} }[/math]

На кварковом уровне:

[math]\displaystyle{ u+2d\rightarrow 2u+d+W^{-}\rightarrow 2u+d+e^{-}+\bar{\nu_{e}} }[/math]

Предсказание

После успехов КЭД в предсказании электромагнетизма начали предприниматься попытки построения похожей теории для слабого взаимодействия. Удалось получить теорию электрослабого взаимодействия, которая объясняла как слабое, так и электромагнитное взаимодействие. Теория была создана Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом, за которую все трое совместно получили Нобелевскую премию по физике 1979 года. Теория предсказывала не только W-бозоны, которые регулировали бета-распад, но ещё и неоткрытый на тот момент Z-бозон.

Единственной проблемой теории оставались массы бозонов — их поведение полностью описывалось группой [math]\displaystyle{ SU(2) }[/math], но в ней частицы обязаны быть безмассовыми. Это означало, что должен существовать некоторый механизм, нарушающий симметрию и придающий массу. Этот механизм известен как механизм Хиггса, а частица, которая его регулирует, называется бозон Хиггса.

Открытие

В 1973 году производились наблюдения взаимодействий между электроном и нейтрино, предсказанных теорией электрослабого взаимодействия. В огромной пузырьковой камере «Гаргамель», облучаемой пучком нейтрино от ускорителя, наблюдали треки электронов, которые внезапно начинали двигаться. Это явление было интерпретировано как взаимодействие нейтрино и электрона при помощи обмена невидимым Z-бозоном. Нейтрино также очень трудно детектировать, так что единственным наблюдаемым эффектом является импульс, полученный электроном после взаимодействия.

Наблюдать бозоны напрямую удалось только с появлением мощных ускорителей. Первым из таких стал Супер-протонный синхротрон (SPS) с детекторами UA1 и UA2, на котором в результате серии экспериментов, проведённых под руководством Карло Руббиа и Симона ван дер Мера, было доказано существование W-бозона. Частицы рождались в столкновениях встречных пучков протонов и антипротонов. Руббиа и Ван дер Мер были награждены Нобелевской премией по физике 1984 года всего через полтора года после открытия, что было необычным шагом со стороны обычно консервативного Нобелевского фонда.

Распад

У W-бозона есть 2 основных канала распада[2]:

  • Лептон и антинейтрино (электрон — 10,75 %, мюон — 10,57 %, тау — 11,25 %)
  • Адроны (67,6 %)

Масса

В 2022 году коллаборация физиков из Фермилаб после десяти лет исследований получила новые данные о массе W-бозона, которые существенно расходились со стандартной моделью. По их расчётам, масса W-бозона равна 80 433,5±9,4 МэВ в то время, как стандартная модель предсказывает массу всего лишь 80 357±6 МэВ. Эти значения отличаются друг от друга на семь стандартных отклонений. Подтверждение этих данных может говорить о существовании новой частицы или физики за пределами стандартной модели[3].

См. также

Примечания

  1. Удивительный мир внутри атомного ядра. Вопросы после лекции Архивировано 15 июля 2015 года., ФИАН, 11 сентября 2007 года
  2. 2,0 2,1 J.Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). Калибровочные бозоны, W-бозон. Доступно на pdglive.lbl.gov (недоступная ссылка) (англ.)
  3. Новые данные о массе W-бозона ставят под сомнение Стандартную модель

Ссылки