Перейти к содержанию

Теплоёмкость

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
(перенаправлено с «Теплоемкость»)
Теплоёмкость
[math]\displaystyle{ C=\frac{\delta Q}{\mathrm{d} T} }[/math]
Размерность L2MT −2Θ−1
Единицы измерения
СИ Дж/К
СГС эрг/К
Примечания
Скалярная величина

Теплоёмкость — количество теплоты, поглощаемой или выделяемой телом в процессе нагревания, либо остывания на 1 градус по шкале цельсия. Более точно, теплоёмкость — физическая величина, определяемая как отношение количества теплоты [math]\displaystyle{ \delta Q }[/math], поглощаемой/выделяемой термодинамической системой при бесконечно малом изменении её температуры [math]\displaystyle{ T }[/math], к величине этого изменения [math]\displaystyle{ \mathrm{d} T }[/math][1][2][3][4][5]:

[math]\displaystyle{ C = {\delta Q \over \mathrm{d}T}. }[/math]

Малое количество теплоты обозначается [math]\displaystyle{ \delta Q }[/math] (а не [math]\displaystyle{ \mathrm{d} Q }[/math]), чтобы подчеркнуть, что это не дифференциал параметра состояния (в отличие, например, от [math]\displaystyle{ \mathrm{d} T }[/math]), а функция процесса. Поэтому и теплоёмкость — это характеристика процесса перехода между двумя состояниями термодинамической системы[6], которая зависит и от пути процесса (например, от проведения его при постоянном объёме или постоянном давлении)[7][8], и от способа нагревания/охлаждения (квазистатического или нестатического)[7][9]. Неоднозначность в определении теплоёмкости[10] на практике устраняют тем, что выбирают и фиксируют путь квазистатического процесса (обычно оговаривается, что процесс происходит при постоянном давлении, равным атмосферному). При однозначном выборе процесса теплоёмкость становится параметром состояния[11][12] и теплофизическим свойством вещества, образующего термодинамическую систему[13].

Удельная, молярная и объёмная теплоёмкости

Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):

[math]\displaystyle{ c = {C \over m} }[/math]

и молярной теплоёмкости (теплоёмкости одного моля вещества):

[math]\displaystyle{ C_\mu = {C \over \nu}, }[/math]

где [math]\displaystyle{ \nu = {m \over \mu} }[/math] — количество вещества в теле; [math]\displaystyle{ m }[/math] — масса тела; [math]\displaystyle{ \mu }[/math] — молярная масса. Молярная и удельная теплоёмкости связаны соотношением [math]\displaystyle{ C_\mu = c\mu }[/math][14][15].

Объёмная теплоёмкость (теплоёмкость единицы объёма тела):

[math]\displaystyle{ C' = {C \over V}. }[/math]

Теплоёмкость для различных процессов и состояний вещества

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Теплоёмкость идеального газа

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Молярная теплоёмкость при постоянном объёме:

[math]\displaystyle{ C_V = {dU \over dT} = \frac{i}{2}R, }[/math]

где [math]\displaystyle{ R }[/math] ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, [math]\displaystyle{ i }[/math] — число степеней свободы молекулы[14][15].

Молярная теплоёмкость при постоянном давлении связана с [math]\displaystyle{ C_V }[/math] соотношением Майера:

[math]\displaystyle{ C_P = C_V+R = {{i+2} \over 2}R. }[/math]

Теплоёмкость кристаллов

Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твёрдого тела:

Температурная зависимость

С ростом температуры теплоёмкость растёт у кристаллов, практически не меняется у жидкостей и газов.

При фазовом переходе происходит скачок теплоёмкости. Теплоёмкость вблизи самого фазового перехода стремится к бесконечности, поскольку температура фазового перехода остаётся постоянной при изменении теплоты.

Удельная теплоёмкость воды при различных давлениях

Примечания

  1. Теплоёмкость. БРЭ, 2016.
  2. Булидорова Г. В. и др., Физическая химия, кн. 1, 2016, с. 41.
  3. Артемов А. В., Физическая химия, 2013, с. 14.
  4. Ипполитов Е. Г. и др., Физическая химия, 2005, с. 20.
  5. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 65.
  6. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 66.
  7. Перейти обратно: 7,0 7,1 Лифшиц Е. М., Теплоёмкость, 1992.
  8. Белов Г. В., Термодинамика, ч. 1, 2017, с. 94.
  9. Лифшиц Е. М., Теплоёмкость, 1976.
  10. Базаров И. П., Термодинамика, 2010, с. 39.
  11. Борщевский А. Я., Физическая химия, т. 1, 2017, с. 115.
  12. Кубо Р., Термодинамика, 1970, с. 22.
  13. Беляев Н. М., Термодинамика, 1987, с. 5.
  14. Перейти обратно: 14,0 14,1 Никеров. В. А. Физика: учебник и практикум для академического бакалавриата. — Юрайт, 2015. — С. 127—129. — 415 с. — ISBN 978-5-9916-4820-2.
  15. Перейти обратно: 15,0 15,1 Ильин В. А. Физика: учебник и практикум для прикладного бакалавриата. — Юрайт, 2016. — С. 142—143. — 399 с. — ISBN 978-5-9916-6343-4.

Литература

  • Артемов А. В. Физическая химия. — М.: Академия, 2013. — 288 с. — (Бакалавриат). — ISBN 978-5-7695-9550-9.
  • Базаров И. П. [www.libgen.io/book/index.php?md5=85124A004B05D9CD4ECFB6106E1DD560 Термодинамика]. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3. (недоступная ссылка)
  • Белов Г. В. [www.libgen.io/book/index.php?md5=8E73E5B941B5841BAE1F74E200306649 Термодинамика. Часть 1]. — 2-е изд., испр. и доп. — М.: Юрайт, 2017. — 265 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-02731-0. (недоступная ссылка)
  • Беляев Н. М. [libgen.io/book/index.php?md5=bbaf63a616d5d3fa315ef65659841880 Термодинамика]. — Киев: Вища школа, 1987. — 344 с.
  • Борщевский А. Я. [www.libgen.io/book/index.php?md5=A5B4FC1FCDA96540A34A61CBFEB2DD8D Физическая химия. Том 1 online. Общая и химическая термодинамика]. — М.: Инфра-М, 2017. — 868 с. — (Высшее образование: Бакалавриат). — ISBN 978-5-16-104227-4. (недоступная ссылка)
  • Булидорова Г. В., Галяметдинов Ю. Г., Ярошевская Х. М., Барабанов В.П. Физическая химия. Книга 1. Основы химической термодинамики. Фазовые равновесия. — М.: КДУ; Университетская книга, 2016. — 516 с. — ISBN 978-5-91304-600-0.
  • Ипполитов Е. Г., Артемов А. В., Батраков В.В. Физическая химия / Под ред. Е. Г. Ипполитова. — М.: Академия, 2005. — 448 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-1456-6.
  • Кубо Р. [www.libgen.io/book/index.php?md5=800842C9CC74ADB4CC04B0BE82BB1BF7 Термодинамика]. — М.: Мир, 1970. — 304 с. (недоступная ссылка)
  • Лифшиц Е. М. Теплоёмкость // Физическая энциклопедия / Ред. А. М. Прохоров. — М.: Большая Советская Энциклопедия, 1992. — Т. 5. — С. 77–78.
  • Лифшиц Е. М. Теплоёмкость // Большая советская энциклопедия / Ред. А. М. Прохоров. — 3-е издание. — М.: Большая Советская Энциклопедия, 1976. — Т. 25. — С. 451.
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2006. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  • Теплоемкость // Большая российская энциклопедия. — М.: Большая российская энциклопедия, 2016. — Т. 32. — С. 54.