Перейти к содержанию

Метрика Васерштейна

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Метрика Васерштейна — естественная метрика на пространстве вероятностных мер в метрическом пространстве.

Интуитивно, если каждая мера измеряет распределение «грунта» по метрическому пространству М, то расстояние Васерштейна измеряет минимальную стоимость преобразования одного распределения грунта в другое, в простейшем случае предполагается, что стоимость прямо пропорциональна количеству грунта и расстоянию, на которое его надо перетащить.

Название «метрика Васерштейна» было предложено Добрушиным в 1970 году, в честь Леонида Васерштейна (англ. Leonid Vaseršteĭn), который рассматривал её в 1969 году.

Определение

Пусть (Md) — метрическое пространство, для которого каждая вероятностная мера на М является мерой Радона.

Для р ≥ 1, пусть Рp(М) обозначает совокупность всех вероятностных мер μ на M с конечным p-м моментом: то есть для некоторой (а значит и для любой) точки х0 в М, имеем

[math]\displaystyle{ \int_{M} d(x, x_{0})^{p} \, \mathrm{d} \mu (x) \lt +\infty. }[/math]

Тогда p-я метрика Васерштейна Wр(μ,ν) между двумя вероятностными мерами μ и ν в Рp(М) определяется как

[math]\displaystyle{ W_{p} (\mu, \nu):=\left( \inf_{\gamma \in \Gamma (\mu, \nu)} \int_{M \times M} d(x, y)^{p} \, \mathrm{d} \gamma (x, y) \right)^{1/p}, }[/math]

где Γ(μν) обозначает совокупность всех мер по M × M с маргинальными (частными) распределениями μ и ν для первого и второго параметров соответственно. (Множество мер Γ(μν) также называют совокупность всех спариваний μ с ν.)

Свойства

  • Сходимость в этой метрике [math]\displaystyle{ W_p }[/math] эквивалентна слабой сходимости мер плюс сходимость первого p-го момента.
  • Дуальное определение W1 является частным случаем теоремы двойственности Канторовича — Рубинштейна (1958): если μ и ν имеют ограниченный носитель, то
    [math]\displaystyle{ W_1 (\mu, \nu) = \sup \left\{ \int_M f(x) \, \mathrm{d} (\mu - \nu) (x) \right\}, }[/math]
где супремум берётся по всем 1-липшицевым функциям f.
  • Для любого p ≥ 1, метрическое пространство (Pp(М), Wр) является сепарабельным и полным, если (М, d) сепарабельно и полнo[1].

См. также

Примечания

  1. Bogachev, V.I.; Kolesnikov, A.V. The Monge-Kantorovich problem: achievements, connections, and perspectives (англ.) // Успехи математических наук. — РАН. — Vol. 67. — P. 785—890. — doi:10.1070/RM2012v067n05ABEH004808.

Литература