Кольца Ньютона

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И. Ньютоном[1].

Пример колец Ньютона

Описание

Интерференционная картина в виде колец возникает при отражении света от двух поверхностей, одна из которых плоская, а другая имеет относительно большой радиус кривизны и соприкасается с первой (например, стеклянная пластинка и плосковыпуклая линза). Если на такую систему в направлении, перпендикулярном плоской поверхности, падает пучок монохроматического света, то световые волны, отражённые от каждой из упомянутых поверхностей, интерферируют между собой. Сформированная таким образом интерференционная картина состоит из наблюдающегося в месте соприкосновения поверхностей тёмного кружка и окружающих его чередующихся между собой светлых и тёмных концентрических колец[2].

Классическое объяснение явления

Образование тёмных и светлых интерференционных полос в клиновидном воздушном зазоре между двумя стеклянными пластинами. Зазор между поверхностями и длина волны световых волн для наглядности сильно преувеличены.

Во времена Ньютона из-за недостатка сведений о природе света дать полное объяснение механизма возникновения колец было крайне трудно. Ньютон установил связь между размерами колец и кривизной линзы; он понимал, что наблюдаемый эффект связан со свойством периодичности света, но удовлетворительно объяснить причины образования колец удалось лишь значительно позже Томасу Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.

Образование колец Ньютона в отражённом (слева) и в проходящем свете (справа)

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстаёт от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

[math]\displaystyle{ \Delta=m\lambda }[/math] — max,

где [math]\displaystyle{ m }[/math] — любое целое число, [math]\displaystyle{ \lambda }[/math] — длина волны.

Напротив, если вторая волна отстаёт от первой на нечётное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны гасят друг друга.

[math]\displaystyle{ \Delta=(2m+1){\lambda\over 2} }[/math] — min,

где [math]\displaystyle{ m }[/math] — любое целое число, [math]\displaystyle{ \lambda }[/math] — длина волны.

Для учёта того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода (разность оптических длин пути).

Если [math]\displaystyle{ nr }[/math] — оптическая длина пути, где [math]\displaystyle{ n }[/math] — показатель преломления среды, а [math]\displaystyle{ r }[/math] — геометрическая длина пути световой волны, то получаем формулу оптической разности хода:

[math]\displaystyle{ n_2r_2-n_1r_1=\Delta. }[/math]

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами тёмных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на [math]\displaystyle{ \pi }[/math]; этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.

Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

[math]\displaystyle{ r_k = \sqrt{\left(k - {1 \over 2}\right)\frac{\lambda R}{n}}, }[/math]

где [math]\displaystyle{ R }[/math] — радиус кривизны линзы, [math]\displaystyle{ k = 1, 2, ..., }[/math] [math]\displaystyle{ \lambda }[/math] — длина волны света в вакууме, [math]\displaystyle{ n }[/math] — показатель преломления среды между линзой и пластинкой.

Радиус k-го тёмного кольца Ньютона в отражённом свете определяется в соответствии с формулой:

[math]\displaystyle{ r_k = \sqrt{k\frac{\lambda R}{n}}. }[/math]

Использование

Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света и показателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.

Используются в физиологии. Подсчёт форменных элементов производится после притирания покровного стекла и камеры Горяева до появления колец Ньютона[3].

Примечания

  1. Гагарин А. П. Ньютона кольца // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3 Магнитоплазменный компрессор — Пойнтинга теорема. — С. 370-371. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Ландсберг Г. С. Оптика. — М.: Физматлит, 2003. — С. 115. — 848 с. — ISBN 5-9221-0314-8.
  3. Описание сетки камеры Горяева. Дата обращения: 10 июля 2015. Архивировано 3 сентября 2014 года.

Ссылки