Перейти к содержанию

Двойной бета-распад

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Ядерная физика
Атомное ядро · Радиоактивный распад · Ядерная реакция · Термоядерная реакция

Двойной бета-распад, 2β-распад, ββ-распад — общее название нескольких видов радиоактивного распада атомного ядра, которые обусловлены слабым взаимодействием и изменяют заряд ядра на две единицы[1].

Двойной бета-распад в собственном смысле слова сопровождается увеличением заряда ядра на две единицы и излучением двух электронов:

[math]\displaystyle{ (A,Z) \rightarrow (A,Z+2) + 2e^- + 2 \bar{\nu}_e. }[/math]

Другие виды 2β-распада уменьшают заряд ядра на две единицы:

[math]\displaystyle{ (A,Z) + 2e^- \rightarrow (A,Z-2) + 2 \nu_e; }[/math]
[math]\displaystyle{ (A,Z) + e^- \rightarrow (A,Z-2) + e^+ + 2 \nu_e; }[/math]
[math]\displaystyle{ (A,Z) \rightarrow (A,Z-2) + 2e^+ + 2 \nu_e. }[/math]

Двойной бета-распад — самый редкий из всех процессов радиоактивного распада. Все 14 нуклидов, для которых этот процесс достоверно наблюдался, имеют период полураспада больше чем 7×1018 лет[2], а у 128Te период полураспада составляет (3,5±2,0)⋅1024 лет[3], что на сегодня является абсолютным рекордом среди всех радиоактивных нуклидов. Подтверждённые наблюдения относятся только к 2β-распаду с увеличением заряда ядра, за исключением бария-130, испытывающего, вероятно, двойной электронный захват (период полураспада (2,2±0,5)⋅1021 лет, измерен в геохимическом эксперименте по накоплению продукта распада, ксенона-130, в кристаллической решётке древнего минерала, содержащего барий)[3], криптона-78[4] и ксенона-124[5].

Распад может осуществляться не только на основное состояние дочернего ядра, но и на возбуждённые состояния. В этом случае излучается также один или несколько гамма-квантов и/или конверсионных электронов.

Безнейтринный двойной бета-распад

В отличие от приведённых выше реакций (относящихся к двухнейтринному 2ν2β-распаду), безнейтринный 0ν2β-распад не сопровождается эмиссией нейтрино или антинейтрино. В результате такого процесса лептонное число не сохраняется (изменяется на две единицы). Хотя Стандартная Модель физики элементарных частиц запрещает процессы с нарушением закона сохранения лептонного числа, многие расширения СМ включают в себя процессы такого рода. Доказано, что для осуществления безнейтринного 2β-распада необходимо, чтобы нейтрино

Благодаря этому обстоятельству, 0ν2β-распад является чувствительным индикатором майорановской массы нейтрино. В настоящее время не существует достоверных наблюдений безнейтринных 2β-процессов, однако нижние ограничения на период полураспада по этому каналу для разных ядер достигают [math]\displaystyle{ 4,6 \times 10^{24} }[/math] лет. Это соответствует верхнему ограничению на майорановскую массу нейтрино порядка нескольких сотен миллиэлектронвольт[6]. Кроме того, ограничения на вероятность безнейтринного 2β-распада позволяют установить ограничения на другие параметры теории, например на константы связи правых лептонных и кварковых токов в слабом взаимодействии, константы связи нейтрино с майороном, некоторые параметры суперсимметричных моделей. В настоящее время в мире действует или сооружается около десятка крупных подземных детекторов, предназначенных для поиска безнейтринного двойного бета-распада: GERDA, NEMO-3, Genius, Cuore, Majorana и т. д.

Благодаря исследованиям двойного безнейтринного бета-распада можно определить природу нейтрино (дираковская это частица или майорановская) и иерархию масс нейтрино (прямая или инвертированная).

См. также

Примечания

  1. Наумов А. И. Физика атомного ядра и элементарных частиц. - М., Просвещение, 1984. - С. 203
  2. Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — Bibcode2003NuPhA.729....3A.Открытый доступ
  3. 3,0 3,1 List of Adopted Double Beta (ββ) Decay Values. Архивная копия от 12 октября 2008 на Wayback Machine National Nuclear Data Center. Brookhaven National Laboratory, 2010. Brookhaven National Laboratory Report BNL-91299-2010 Архивная копия от 5 марта 2022 на Wayback Machine.
  4. Patrignani, C. et al. Review of Particle Physics (неопр.) // Chinese Physics C[англ.]. — 2016. — Т. 40, № 10. — С. 100001. — doi:10.1088/1674-1137/40/10/100001., p. 768.
  5. Aprile, E. et al. Observation of two-neutrino double electron capture in 124Xe with XENON1T (англ.) // Nature : journal. — 2019. — Vol. 568. — P. 532—535. — doi:10.1038/s41586-019-1124-4.
  6. doi:10.1103/PhysRevLett.129.111801
    Вы можете подставить цитату вручную или с помощью бота.

Литература