Бомбелли, Рафаэль
Рафаэль Бомбелли | |
---|---|
итал. Rafael Bombelli | |
Дата рождения | 1526 |
Место рождения | Болонья |
Дата смерти | 1572 |
Место смерти | вероятно, Рим |
Страна | Папская область |
Научная сфера | математика |
Рафаэль Бомбелли (итал. Rafael Bombelli; ок. 1526, Болонья — 1572, вероятно, Рим) — итальянский математик, инженер-гидротехник. Настоящая фамилия: Маццоли (Mazzoli), ему пришлось сменить фамилию при возвращении в Болонью, потому что его дед был некогда казнён как заговорщик[1].
Известен тем, что ввёл в математику комплексные числа как легальный объект и разработал базовые правила действий с ними. Перевёл и опубликовал «Арифметику» Диофанта; благодаря этому событию начинается история теории чисел в Европе.
Биография
Рафаэль Маццоли родился в Болонье в семье торговца шерстью Антонио Маццоли и дочери портного Диаманте Скудьери (Diamante Scudieri), он был старшим из шести их детей. Учился архитектуре. Как раз в это время открытия болонского математика дель Ферро в изложении Тартальи вызвали подъём массового интереса к математике, который захватил и Бомбелли[1].
Будучи по делам в Риме, Бомбелли познакомился с профессором университета Антонио Мария Пацци, который незадолго до того обнаружил в Ватиканской библиотеке рукопись «Арифметики» Диофанта. Друзья договорились перевести её на латинский. Одновременно с переводом Бомбелли пишет свой трактат «Алгебра» в трёх книгах, куда включил не только свои разработки, но и множество задач Диофанта с собственными комментариями. Однако главную ценность труда Бомбелли составили его собственные открытия. Он планировал дополнить трактат ещё двумя книгами геометрического содержания, но не успел их завершить. В 1923 году незаконченные рукописи последних томов «Алгебры» были обнаружены историком Этторе Бортолотти[итал.][1] и опубликованы в 1929 году.
Научная деятельность
Алгебра
Главный труд Бомбелли — «Алгебра» (L’Algebra), написана около 1560 года, издана в 1572 году в Венеции и переиздана в 1579 году в Болонье.
«Алгебра» примечательна во многих отношениях. Бомбелли, первый в Европе, свободно оперирует с отрицательными числами, приводит правила работы с ними, включая правило знаков для умножения. Он также первым, опередив своё время, оценил пользу комплексных чисел, в частности для решения уравнений третьей степени по формулам Кардано.
Пример[2]. Уравнение [math]\displaystyle{ x^3 = 15x + 4 }[/math] имеет вещественный корень x = 4, однако по формулам Кардано получаем: [math]\displaystyle{ x=\sqrt[3]{2+11i}+\sqrt[3]{2-11i} }[/math].
Бомбелли обнаружил, что [math]\displaystyle{ \sqrt[3]{2 \pm 11i}=2 \pm i }[/math], откуда сразу получается нужный вещественный корень. Он подчеркнул, что в подобных (неприводимых) случаях комплексные слагаемые в формуле Кардано всегда сопряжены, поэтому при их сложении получается вещественный корень. Данное уравнение имеет ещё два вещественных корня ([math]\displaystyle{ -2\pm \sqrt{3} }[/math]), однако отрицательные значения в тот период ещё не рассматривались как допустимые. Разъяснения Бомбелли положили начало успешному применению в математике комплексных чисел.
Исчерпывающее исследование неприводимого случая требовало умения извлекать корни из комплексных чисел, а этого умения у Бомбелли ещё не было. Полностью проблему решили Виет и де Муавр.
Бомбелли также придумал первые скобки; они имели вид прямой и зеркально-отражённой буквы L. Привычные нам круглые скобки появились в том же XVI веке, однако в общее употребление их ввели только Лейбниц и Эйлер. Бомбелли первый стал использовать числовое (а не словесное, как ранее) обозначение для показателя степени, помечаемое специальной дужкой снизу. Современное обозначение показателя ввёл в широкое обращение Декарт[3].
Цепные дроби
Из других научных достижений Бомбелли следует отметить фактическое применение цепных дробей для вычисления квадратных корней из натуральных чисел. Понятия цепной дроби у Бомбелли ещё не было, и ниже излагается алгоритм в более поздней версии, данной Катальди (1613 год)[4].
Чтобы найти значение [math]\displaystyle{ \sqrt{n} }[/math], сначала определим его целое приближение: [math]\displaystyle{ \sqrt{n} = a \pm r }[/math], где [math]\displaystyle{ 0\lt r\lt 1\ }[/math]. Тогда [math]\displaystyle{ n=(a \pm r)^2=a^2\pm 2ar+r^2\ }[/math]. Отсюда несложно вывести, что [math]\displaystyle{ r=\frac{|n-a^2|}{2a\pm r} }[/math]. Повторно подставляя полученное выражение в формулу [math]\displaystyle{ \sqrt{n} = a \pm r }[/math], мы получаем разложение в цепную дробь:
- [math]\displaystyle{ a\pm \frac{|n-a^2|}{2a\pm \frac{|n-a^2|}{2a\pm \frac{|n-a^2|}{2a\pm \cdots }}} }[/math]
Для оценки точности полученных приближений можно использовать одно из свойств цепных дробей: последовательные значения подходящих дробей колеблются около точного значения, чередуя приближения с избытком и недостатком.
Пример. Для [math]\displaystyle{ \sqrt{13}, a=3 }[/math] мы получаем последовательные приближения:
- [math]\displaystyle{ 3\frac{2}{3},\ 3\frac{3}{5},\ 3\frac{20}{33},\ 3\frac{66}{109},\ 3\frac{109}{180},\ 3\frac{720}{1189},\ \cdots }[/math]
Последняя дробь равна [math]\displaystyle{ 3.605550883 }[/math]…, в то время как [math]\displaystyle{ \sqrt{13}\ \approx 3.605551275 }[/math].
Другие достижения
Бомбелли занимался древними задачами удвоения куба и трисекции угла и сумел доказать, что их можно свести к решению кубического уравнения[5].
Память
В честь Бомбелли названы:
Примечания
- ↑ 1,0 1,1 1,2 MacTutor.
- ↑ Стиллвелл Д. Математика и ее история. — Москва-Ижевск: Институт компьютерных исследований, 2004. — С. 130. — 530 с.
- ↑ Cajori F. A History of Mathematical Notations. Vol. 1 (1929 reprint) §161. — NY: Cosimo, Inc., 2007. — xvi + 456 p. — ISBN 978-1-60206-684-7.
- ↑ Bombelli_algebra . Дата обращения: 26 января 2021. Архивировано 6 февраля 2021 года.
- ↑ Математики. Механики, 1983.
Труды
- «Алгебра» Бомбелли (итал.).
Литература
- Боголюбов А. Н. Бомбелли Раффаэле // Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
- История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
- Каучикас А. П. Неопределённые уравнения в «Алгебре» Р. Бомбелли // История и методология естественных наук. — Изд. МГУ, 1978. — Т. 20. Математика и механика. — С. 138—146.
- Смирнова Г. С. Геометрическое решение кубических уравнений в "Алгебре" Рафаэля Бомбелли // История и методология естественных наук. — Изд. МГУ, 1989. — Т. 36. Математика и механика. — С. 123—129.
Ссылки
- Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Бомбелли, Рафаэль (англ.) — биография в архиве MacTutor.