Фторид серы(VI)

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
(перенаправлено с «Элегаз»)
Фторид серы​(VI)​
Общие
Систематическое
наименование
Фторид серы​(VI)​
Традиционные названия гексафторид серы, шестифтористая сера, элегаз
Хим. формула SF6
Рац. формула SF6
Физические свойства
Состояние газ
Молярная масса 146,06 г/моль
Плотность Газ: 6,164 г/л
Жидкость: 1,33 г/см³
Термические свойства
Температура
 • плавления −50,8 °C
 • кипения сублимация
при −63,9 °C
Мол. теплоёмк. 97,15 Дж/(моль·К)
Теплопроводность 0,012058 Вт/(м·K)
Энтальпия
 • образования −1219 кДж/моль
Структура
Координационная геометрия октаэдрическая
Кристаллическая структура орторомбическая
Дипольный момент Д
Классификация
Рег. номер CAS 2551-62-4
SMILES
 
RTECS WS4900000
Безопасность
Токсичность малотоксичен или нетоксичен
Пиктограммы СГС Пиктограмма «Восклицательный знак» системы СГСПиктограмма «Газовый баллон» системы СГС
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Гексафтори́д се́ры (также элега́з или шестифто́ристая се́ра, SF6) — неорганическое вещество, при стандартных условиях представляет собой тяжёлый газ5 раз тяжелее воздуха). Соединение было впервые получено и описано в 1900 году Анри Муассаном в ходе работ по изучению химии фтора.

Методы получения

Возможно получать гексафторид серы из простых веществ:

[math]\displaystyle{ \mathsf{S + 3F_2 \rightarrow SF_6} }[/math]

Также гексафторид серы образуется при разложении сложных фторидов серы:

[math]\displaystyle{ \mathsf{S_2F_{10} \rightarrow SF_6 + SF_4} }[/math]

Физико-химические свойства

Практически бесцветный газ, без запаха и вкуса.

Обладает высоким пробивным напряжением (89 кВ/см — примерно в 3 раза выше, чем у воздуха при нормальном давлении).

Охлаждение газа при атмосферном давлении приводит к конденсации в бесцветное твёрдое вещество при −63,8 °C. Твёрдый гексафторид серы может быть расплавлен под давлением при −50,8 °C. Параметры тройной точки: t = −50,8 °C, P = 2,3 атм[1].

В твёрдой фазе при T = 94,30 К — эндотермическое превращение[1].

Плохо растворим в воде (1 объём SF6 в 200 объёмах воды), этаноле и диэтиловом эфире[2], хорошо растворим в нитрометане.

Плотность элегаза при температуре 20 °C и давлении 753,5 мм рт. ст. составляет 6,093 кг/м³[1].

Твёрдый гексафторид серы имеет плотность 2,683 г/см3 при −195 °C, 2,51 г/см3 при −50 °C[1].

Относительная диэлектрическая проницаемость — 1,0021. Полное число степеней свободы молекулы элегаза равно 21, из них три степени свободы — в поступательном движении, три — во вращательном, а остальные — в колебательном. Диаметр молекулы равен 5,33 Å.

Поверхностное натяжение жидкого гексафторида серы составляет 11,63 мН/м (−50 °C), 8,02 мН/м (−20 °C)[1].

Вязкость газообразного элегаза несколько ниже вязкости воздуха: 15,37 мкПа·с (+22,5 °C), 18,71 мкПа·с (+100 °C)[1].

Коэффициент теплопроводности, Вт/(м·К): 1,32 (ж., +20 °C), 1,36 (ж., +30 °C), 1,43 (ж., +50 °C)[1], 0,0138 (г., +27,5 °C, 1 атм.)[3].

В составе молекулы 21,95 % серы и 78,05 % фтора по массе.

Термодинамические величины

Свойство Значение при н. у. (газ)
Энтальпия образования −1219 кДж/моль
Энтропия образования 291,6 Дж/(моль·К)
Теплоёмкость 97,15 Дж/(моль·К)[4]
Теплопроводность 12,058 мВт/(м·К)[4]
Критическая температура 318,697...318,712 К (45,547...45,562 °С)[1]
Критическое давление 3,71 МПа (по разным данным, от 37,113 до 38,27 атм[1])
Критический объём 198,0 см3/моль[1]
Критическая плотность 0,73...0,7517 г/см3[1]
Теплота плавления 1,1...1,39 ккал/моль[1]
Теплота сублимации (при −63,8 °C) 5,64...5,57 ккал/моль[1]

Химические свойства

Гексафторид серы — достаточно инертное соединение, наименее активное химически среди всех фторидов серы, не реагирует с водой, вероятно, из-за кинетических факторов. Не реагирует также с растворами HCl, NaOH и NH3, однако при действии восстановителей могут протекать некоторые реакции. Не взаимодействует с галогенами, фосфором, мышьяком, углеродом, кремнием, бором, медью и серебром при температуре красного каления. Не подвергается воздействию нагретых CuO, PbCrO4 и расплавленного KOH[1], но при температуре выше +300°C реагирует с водой под избыточным давлением. Реакцию следует проводить при температуре не выше +370°C:

[math]\displaystyle{ \mathsf{SF_6 + 4H_2O \xrightarrow{\gt +300^oC, p}\ H_2SO_4 + 6HF\uparrow} }[/math]

Взаимодействие с металлическим натрием проходит только при нагревании последнего до температуры кипения, однако уже при 64 °C взаимодействует с раствором натрия в аммиаке: : [math]\displaystyle{ \mathsf{SF_6 + 8Na \rightarrow Na_2S + 6NaF} }[/math]

Гексафторид серы реагирует с литием с выделением большого количества тепла:

[math]\displaystyle{ \mathsf{SF_6 + 6Li \rightarrow S + 6LiF} }[/math]

При этом продукты реакции — элементарная сера и фторид лития — имеют меньший объём, чем исходные вещества, что нашло применение в некоторых экзотических тепловых двигателях (см. ниже).

С водородом и кислородом гексафторид не реагирует. Однако при сильном нагревании (до 400 °C) SF6 взаимодействует с сероводородом, а при 30 °C — с иодоводородом:

[math]\displaystyle{ \mathsf{2SF_6 + 6H_2S \rightarrow S_8 + 12HF} }[/math]
[math]\displaystyle{ \mathsf{SF_6 + 8HI \rightarrow 6HF + H_2S + 4I_2} }[/math]

При повышенном давлении и температуре около 500 °C SF6 окисляет PF3 до PF5:

[math]\displaystyle{ \mathsf{SF_6 + PF_3 \rightarrow PF_5 + SF_4} }[/math]

Применение

  • как изолятор и теплоноситель в высоковольтной электротехнике;
  • как технологическая среда в электронной и металлургической промышленности;
  • в системах газового пожаротушения в качестве пожаротушащего вещества;
  • как хладагент благодаря высокой теплоёмкости, низкой теплопроводности и низкой вязкости[5];
  • для улучшения звукоизоляции в стеклопакетах;
  • в полупроводниковой промышленности для плазмохимического травления кремния;
  • как окислитель в некоторых экзотических тепловых двигателях — например, в паротурбинной установке американской малогабаритной 324-мм противолодочной торпеды Mark 50, где он используется для окисления металлического лития.

Применение в электротехнике

Название «элегаз» шестифтористая сера получила от сокращения «электрический газ». Уникальные свойства элегаза были открыты в СССР, его применение также началось в Советском Союзе. В 30-х годах известный учёный Б. М. Гохберг в ЛФТИ исследовал электрические свойства ряда газов и обратил внимание на некоторые свойства шестифтористой серы SF6 (элегаза)[6]. Потребность в элегазе появилась в стране в начале 1980-х годов и была связана с разработкой и освоением электрооборудования для передач постоянного тока сверхвысокого напряжения. Его промышленное производство в РФ было освоено в 1998 году на Кирово-Чепецком химическом комбинате[7].

Электрическая прочность при атмосферном давлении и зазоре 1 см составляет 89 кВ/см. Характерным является очень большой коэффициент теплового расширения и высокая плотность. Это важно для энергетических установок, в которых проводится охлаждение каких-либо частей устройства, так как при большом коэффициенте теплового расширения легко образуется конвективный поток, уносящий тепло[8].

В центре молекулы элегаза расположен атом серы, а на равном расстоянии от него в вершинах правильного октаэдра располагаются шесть атомов фтора. Это определяет высокую эффективность захвата электронов молекулами, их относительно большую длину свободного пробега и слабую реакционную способность. Поэтому элегаз обладает высокой электрической прочностью.

Элегаз безвреден в смеси с воздухом. Однако вследствие нарушения технологии производства элегаза или его разложения в аппарате под действием электрических разрядов (дугового, коронного, частичных), в элегазе могут возникать чрезвычайно активные в химическом отношении и вредные для человека примеси, а также различные твёрдые соединения, оседающие на стенах конструкции. Интенсивность образования таких примесей зависит от наличия в элегазе примесей кислорода и особенно паров воды.

Некоторое количество элегаза в электротехнической аппаратуре также разлагается в процессе нормальной работы. Например, коммутация тока 31,5 кА в выключателе 110 кВ приводит к разложению 5—7 см³ элегаза на 1 кДж выделяемой в дуге энергии.

Стоимость элегаза довольно высока, однако он нашёл достаточно широкое применение в технике, особенно в высоковольтной электротехнике. Он прежде всего используется как диэлектрик, то есть в качестве основной изоляции для комплектных распределительных устройств, высоковольтных измерительных трансформаторов тока и напряжения и др[9]. Также элегаз используется как среда дугогашения в высоковольтных выключателях[10].

Основные преимущества элегаза перед его основным «конкурентом», трансформаторным маслом, это:

  • взрыво- и пожаробезопасность;
  • снижения массо-габаритных показателей конструкции за счёт уменьшения изоляционных промежутков и улучшенных условий охлаждения токоведущих частей[источник не указан 4180 дней].

Регламентирующие стандарты

IEC

  • IEC 60376:2005 — Технические условия на элегаз (SF6) технического сорта для электрического оборудования.
  • IEC 60480:2004 — Руководство по проверке и обработке серы шестифтористой (SF6), взятой из электротехнического оборудования, и технические условия на её повторное использование.

EN[англ.]

  • EN 60376:2005 — Технические условия на элегаз (SF6) технического сорта для электрического оборудования.
  • EN 60480:2004 — Руководство по проверке и обработке элегаза (SF6), взятого из электротехнического оборудования, и технические условия на его повторное использование.

Вредное воздействие

По степени воздействия на организм человека относится к малоопасным химическим веществам (класс опасности IV согласно ГОСТ 12.1.007-76).

Имеется возможность отравления продуктами распада элегаза (низшими фторидами), образующимися, например, при работе дугогасительных камер в высоковольтных выключателях.

Потенциал разрушения озонового слоя ODP = 0.

Сильнейший известный парниковый газ, потенциал глобального потепления GWP = 24 900. Из-за небольших объёмов изготовления вклад в глобальное потепление не превышает 0,2 %. Регламентируется Киотским протоколом.

Дополнительная информация

Если наполнить гексафторидом серы открытый сверху сосуд (так как газ тяжелее воздуха, то он не будет «выливаться» из сосуда) и поместить туда лёгкую лодочку, сделанную, например, из фольги, то лодочка будет держаться на поверхности и не «утонет». Этот опыт был показан в передаче «Разрушители легенд» как фокус с «прозрачной водой»[12].

Также высокая плотность газа приводит к комичному эффекту при его вдыхании — голос становится очень низким и грубым, подобно голосу Дарта Вейдера. Опыт также демонстрировался в «Разрушителях легенд»[13]. Аналогичный эффект создаёт и ксенон. А гелий, который в 6 раз легче воздуха, при вдыхании, наоборот, создаёт тонкий и писклявый голос.

Примечания

  1. Перейти обратно: 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 Опаловский А. А., Лобков Е. У. Гексафторид серы // Успехи химии. — 1975. — Т. 44, вып. 2. — С. 193—213. — doi:10.1070/RC1975v044n02ABEH002249. Архивировано 1 апреля 2022 года.
  2. [www.xumuk.ru/encyklopedia/2/4038.html Свойства гексафторида серы на сайте «Химик.ру»]
  3. Kestin J., Imaishi N. Thermal conductivity of sulfur hexafluoride (англ.) // International Journal of Thermophysics. — 1985. — Vol. 6, no. 2. — P. 107—118. — ISSN 0195-928X. — doi:10.1007/BF00500026. [исправить]
  4. Перейти обратно: 4,0 4,1 Sulfur hexafluoride. Air Liquide Gas Encyclopedia. Дата обращения: 22 февраля 2013. Архивировано 31 марта 2012 года.
  5. Применение шестифтористой серы. Дата обращения: 20 апреля 2007. Архивировано 17 декабря 2007 года.
  6. Гохберг Б. М. Ленинградский физико-технический институт Академии наук СССР // Успехи физических наук. — 1940. — Т. XXIV, вып. 1. — С. 11-20. Архивировано 4 марта 2016 года. См. стр. 16-17, раздел «Электрическая прочность газов»
  7. Уткин В. В. Завод у двуречья. Кирово-Чепецкий химический комбинат имени Б. П. Константинова: строительство, развитие, люди. — Киров: ОАО «Дом печати — Вятка», 2007. — Т. 4 (1973—1992), часть 1. — С. 66—67. — 144 с. — 1000 экз. — ISBN 978-5-85271-293-6.
  8. Коробейников С.М., д.ф.м.н., профессор. Диэлектрические материалы. 4.1.2. Электроотрицательные газы, применение газообразных диэлектриков.. Дата обращения: 2 июня 2011. Архивировано 6 октября 2014 года.
  9. ЗВА :: Измерительные трансформаторы с газовой изоляцией (недоступная ссылка). Дата обращения: 16 декабря 2009. Архивировано 27 мая 2011 года.
  10. Применение SF6 в высоковольтной электронике.. Дата обращения: 9 июля 2009. Архивировано 15 июля 2009 года.
  11. Элегаз. Свойства. Дата обращения: 17 июля 2012. Архивировано 6 января 2012 года.
  12. Выпуск 105. Вирусное видео. 6 сезон
  13. Фрагмент передачи «Разрушители мифов». Дата обращения: 1 октября 2017. Архивировано 6 июня 2017 года.

Литература

  • Гохберг Б. М. Элегаз — электрическая газовая изоляция // «Электричество». — 1947. — № 3. — С. 15.

См. также