Хлорофилл a
Хлорофилл а | |
---|---|
Общие | |
Систематическое наименование |
'"`UNIQ--nowiki-00000000-QINU`"' |
Хим. формула | C55H72Mg1O5N4 |
Физические свойства | |
Молярная масса | 893,51 г/моль |
Плотность | 1,079 г/см³ |
Термические свойства | |
Температура | |
• плавления | 152,3 °С (разлагается) |
Химические свойства | |
Растворимость | |
• в воде | в воде не растворим |
• в | Хорошо растворим в этаноле, простых эфирах, петролейном эфире, ацетоне, C6H6, CHCl3. |
Классификация | |
Рег. номер CAS | 479-61-8 |
PubChem | 6433192 |
SMILES | |
ChemSpider | 16736115 |
Безопасность | |
NFPA 704 | |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Хлорофи́лл a — особая форма хлорофилла, используемая для оксигенного фотосинтеза. Сильнее всего поглощает свет в фиолетово-голубой и оранжево-красной части спектра[1]. Этот пигмент жизненно необходим для фотосинтеза в клетках эукариот, цианобактерий и прохлорофитов из-за своей способности отдавать возбуждённые электроны в электрон-транспортную цепь[2]. Хлорофилл a также является частью антенного комплекса и передаёт резонансную энергию, которая затем поступает в реакционный центр, где расположены специальные хлорофиллы P680 и P700[3].
Распространённость хлорофилла a
Хлорофилл a необходим большинству фотосинтезирующих организмов для преобразования энергии света в химическую энергию, но это не единственный пигмент, который может быть использован для фотосинтеза. Все организмы с оксигенным типом фотосинтеза используют хлорофилл a, но имеют разные вспомогательные пигменты, как, например хлорофилл b[2]. В небольших количествах можно обнаружить хлорофилл a у зелёных серобактерий — анаэробных фотоавтотрофов[4]. Эти организмы используют бактериохлорофиллы и некоторое количество хлорофилла a, но не производят кислород[4]. Такой фотосинтез называется аноксигенным.
Структура молекулы
Молекула хлорофилла состоит из кольца хлорина с ионом Mg в центре, радикалов-заместителей в кольце и фитольного хвоста.
Кольцо хлорина
Хлорофилл a состоит из центрального иона магния, заключённого в кольцо из четырёх ионов азота, также известного как хлорин. Хлориновое кольцо — это гетероциклическое соединение, образованное из пирролов, окружающих атом металла. Именно Mg в центре однозначно отличает структуру молекулы хлорофилла от других молекул[5].
Заместители
В кольце хлорофилла a есть заместители. Каждый тип хлорофиллов характеризуется своими заместителями, и, соответственно, своим спектром поглощения[6]. В качестве заместителей хлорофилл a содержит только метильные группы (CH3). В хлорофилле b метильная группа у третьего атома кольца (зелёная рамочка на картинке) замещена на альдегидную группу[4]. Порфириновое кольцо бактериохлорофиллов более насыщено — в нём не хватает чередования одинарной и двойной связи, что сужает спектр поглощаемого молекулами света[7].
Фитольный хвост
К порфириновому кольцу присоединён длинный фитольный хвост[2]. Это длинный гидрофобный радикал, который прикрепляет хлорофилл a к гидрофобным белкам мембраны тилакоида[2]. Отсоединившись от порфиринового кольца, этот длинный гидрофобный хвост становится предшественником двух биомаркёров — пристана и фитана, оба из которых важны для геохимических исследований и определения качества нефти.
Биосинтез
В биосинтезе хлорофилла a принимают участие несколько ферментов[8]. Биосинтез бактериохлорофилла a и хлорофилла a осуществляют схожие ферменты, которые при некоторых условиях могут взаимно заменять друг друга[8]. Всё начинается с глутаминовой кислоты, которая превращается в 5-аминолевулиновую кислоту. Затем две молекулы этой кислоты восстанавливаются до порфобилиногена, четыре молекулы которого формируют протопорфирин IX[5]. После формирования протопорфирина фермент Mg-хелатаза катализирует включение иона Mg в структуру хлорофилла a[8]. Далее происходит циклизация радикала в шестом положении кольца и образуется протохлорофиллид, у которого в ходе светозависимой реакции с участием фермента протохлорофиллид-оксидоредуктаза происходит восстановление двойной связи в кольце D[5]. Завершается биосинтез хлорофилла присоединением фитольного хвоста[9].
Реакции фотосинтеза
Поглощение света
Спектр
Хлорофилл a поглощает свет в фиолетовой, голубой и красной частях спектра, отражая в основном зелёный цвет, что и придаёт ему характерную окраску. Спектр его поглощения расширяется за счёт вспомогательных пигментов[2] (например, хлорофилла b). В условиях плохой освещённости растения повышают соотношение хлорофилл b/хлорофилл a, синтезируя больше молекул первого, чем второго, и, таким образом, увеличивают производительность фотосинтеза[6].
Светособирающая система
Кванты света, поглощённые пигментами, возбуждают их электроны, в результате чего энергия света преобразуется в энергию химической связи. Поскольку молекулы хлорофилла a могут поглощать только световые волны определённой длины, многие организмы используют вспомогательные пигменты (помечены на рисунке жёлтым цветом), чтобы увеличить спектр поглощения[3]. Вспомогательные пигменты передают собранную энергию от одного пигмента к другому в виде резонансной энергии, до тех пор, пока она не достигнет специальной пары молекул хлорофилла a в реакционном центре[6] — P680 в фотосистеме II и P700 в фотосистеме I[10]. P680 и P700 — основные доноры электронов для электрон-транспортной цепи.
См. также
Примечания
- ↑ PHOTOSYNTHESIS Архивировано 28 ноября 2009 года.
- ↑ 2,0 2,1 2,2 2,3 2,4 Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. Photosynthesis, Light, and Life // Biology of Plants (англ.). — 7th. — W.H. Freeman[англ.], 2005. — P. 119—127. — ISBN 0-7167-9811-5.
- ↑ 3,0 3,1 Papageorgiou,G, and Govindjee. Chlorophyll a Fluorescence, A Signature of Photosynthesis (англ.). — Springer, 2004. — Vol. 19. — P. 14,48,86.
- ↑ 4,0 4,1 4,2 Eisen J. A., Nelson K. E., Paulsen I. T., et al. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2002. — July (vol. 99, no. 14). — P. 9509—9514. — doi:10.1073/pnas.132181499. — PMID 12093901. See pages 9514,48,86.
- ↑ 5,0 5,1 5,2 Zeiger, Eduardo; Taiz, Lincoln. Ch. 7: Topic 7.11: Chlorophyll Biosynthesis // Plant physiology (англ.). — 4th. — Sunderland, Mass: Sinauer Associates[англ.], 2006. — ISBN 0-87893-856-7.
- ↑ 6,0 6,1 6,2 Lange, L.; Nobel, P.; Osmond, C.; Ziegler, H. Physiological Plant Ecology I – Responses to the Physical Environment (англ.). — Springer-Verlag, 1981. — Vol. 12A. — P. 67, 259.
- ↑ Campbell, Mary K.; Farrell, Shawn O. Biochemistry (англ.). — 6th. — Cengage Learning[англ.], 2007. — P. 647. — ISBN 978-0-495-39041-1.
- ↑ 8,0 8,1 8,2 Suzuki J. Y., Bollivar D. W., Bauer C. E. Genetic Analysis of Chlorophyll biosynthesis (англ.) // Annu. Rev. Genet. — 1997. — Vol. 31, no. 1. — P. 61—89. — doi:10.1146/annurev.genet.31.1.61. (недоступная ссылка)
- ↑ Taiz L., Zeiger E., Møller I. M., Murphy A. Figure 7.11.A: The biosynthetic pathway of chlorophyll (2006).
- ↑ Ishikita H., Saenger W., Biesiadka J., Loll B., Knapp E. W. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870 (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2006. — June (vol. 103, no. 26). — P. 9855—9860. — doi:10.1073/pnas.0601446103. — PMID 16788069.