Равновесие Нэша

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
(перенаправлено с «Равновесие по Нэшу»)

Равнове́сие Нэ́ша — концепция решения, одно из ключевых понятий теории игр. Так называется набор стратегий в игре для двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив свою стратегию, если другие участники своих стратегий не меняют[1]. Джон Нэш доказал существование такого равновесия в смешанных стратегиях в любой конечной игре.

История

Джон Форбс Нэш

Эта концепция впервые использована Антуаном Огюстом Курно. Он показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Нэш первым доказал, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. Это было сделано в его диссертации по некооперативным играм в 1950 году.

До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргенштерном (1947).

Математическая формулировка

Соотношение равновесных концепций решения. Стрелками обозначено направление от рафинирований к менее требовательным концепциям

Допустим, [math]\displaystyle{ (S, H) }[/math] — некооперативная игра n лиц в нормальной форме, где S — набор чистых стратегий, а H — набор выигрышей. Когда каждый игрок [math]\displaystyle{ i \in \{1, ..., n\} }[/math] выбирает стратегию [math]\displaystyle{ x_i \in S }[/math] в профиле стратегий [math]\displaystyle{ x = (x_1, ..., x_n), }[/math] игрок i получает выигрыш [math]\displaystyle{ H_i(x). }[/math] Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии [math]\displaystyle{ x_i }[/math], выбранной самим игроком i, но и от чужих стратегий [math]\displaystyle{ x_{-i} }[/math], то есть всех стратегий [math]\displaystyle{ x_j }[/math] при [math]\displaystyle{ j \ne i }[/math]. Профиль стратегий [math]\displaystyle{ x^* \in S }[/math] является равновесием по Нэшу, если изменение своей стратегии с [math]\displaystyle{ x_i^* }[/math] на [math]\displaystyle{ x_i }[/math] не выгодно ни одному игроку [math]\displaystyle{ i }[/math], то есть для любого [math]\displaystyle{ i }[/math]

[math]\displaystyle{ H_i(x^*) \geqslant H_i(x_i, x^*_{-i}). }[/math]

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.

Примеры использования понятия

Социология

В социологической теории рационального выбора отдельно подчёркивается, что устойчивое состояние общества (социальное равновесие) может отличаться от оптимального (социальный оптимум). Такие неоптимальные, но устойчивые состояния и называют в социологии равновесием Нэша.

Актор B
1 2
Актор A 1 A: +1, B: +1 A: −1, B: +2
2 A: +2, B: −1 A: 0, B: 0

В таблице слева приведена структура действия в терминах теории игр, составленная для двух действующих субъектов (акторов). Каждый актор имеет два варианта действия, обозначенных цифрами 1 и 2. Коэффициенты вознаграждения получаемые ими при выборе определённых вариантов действия указаны в соответствующих ячейках таблицы. Предположим, что в данный момент оба актора используют действие 2, а их вознаграждения соответственно равны нулю. Выбрав действие 1, актор A ухудшит собственную ситуацию на одну позицию (A: −1, B: +2). Аналогично актор B самостоятельно выбрав вариант 1, в то время когда актор A продолжает использовать действие 2, только ухудшит свою ситуацию (A: +2, B: −1). Таким образом, несмотря на то, что оба актора понимают, что оптимальным для них была бы ситуация, когда оба они используют действие 1 (вознаграждение — A: +1, B: +1), ни у одного из них нет мотива к изменению ситуации, а равновесие становится результатом отсутствия таких мотивов. Если система уже находится в оптимальном состоянии (когда оба актора выбрали действие 1), то у обоих из них всегда будет искушение начать использовать действие 2, которое принесёт им вознаграждение за счёт другого игрока. Этот пример иллюстрирует возможность существования двух социальных состояний: устойчивого, но неоптимального (оба актора используют вариант 2); а также второго оптимального, но неустойчивого (оба актора используют вариант 1).[2]

Политология

Для объяснения различных явлений в политической теории часто используется понятие ядра́, являющееся более слабым вариантом равновесия Нэша. Ядром называют набор состояний, в каждом из которых ни одна группа акторов, способных выстроить новое (отсутствующее в данном ядре) состояние, не улучшит своей ситуации по сравнению с их состоянием в данном ядре.[2]

Экономика

В отрасли имеются две фирмы № 1 и № 2. Каждая из фирм может установить два уровня цен: «высокие» и «низкие». Если обе фирмы выберут высокие цены, то каждая будет иметь прибыль по 3 млн. Если обе выберут низкие, то каждая получит по 2 млн. Однако, если одна выберет высокие, а другая низкие, то вторая получит 4 млн, а первая только 1 млн. Наиболее выигрышный в сумме вариант — одновременный выбор высоких цен (сумма = 6 млн). Однако это состояние (при отсутствии картельного сговора) нестабильно из-за возможности относительного выигрыша, которая открывается перед фирмой, отступившей от этой стратегии. Поэтому обе компании с наибольшей вероятностью выберут низкие цены. Хотя этот вариант и не даёт максимального суммарного выигрыша (сумма = 4 млн), он исключает относительный выигрыш конкурента, который тот мог бы получить за счёт отступления от взаимно-оптимальной стратегии. Такая ситуация и называется «равновесием по Нэшу»[3].

В модели олигополии Штакельберга для двух фирм-участников бескоалиционной игры можно принять, что существует две стратегии: 1. дуополист Курно (K) и дуополист Штакельберга (S), то есть S-стратег. Таким образом для двух игроков возможны следующие стратегии:

(K1;K2) (K1;S2);(K2;S1);(S1;S2). Как следует из построения модели прибыль при выборе стратегии S: [math]\displaystyle{ \pi^1=\frac{(a-c)^2}{8b} }[/math], а при выборе стратегии K: [math]\displaystyle{ \pi^2=\frac{(a-c)^2}{16b} }[/math], видно, что максимальный выигрыш первого игрока реализуется в ситуации (S1;K2), а второго (K1;S2). Так как эти ситуации несовместимы, то есть не могут реализоваться одновременно, то получить максимальный выигрыш оба игрока одновременно не могут. В данном случае оптимальным поведением обоих игроков будет выбор стратегии S, так как в этом случае стратегия S лучше стратегии K с точки зрения минимального возможного выигрыша. В данном случае выбор (S1;S2) является равновесием по Нэшу. Односторонее отклонение от данной стратегии автоматически уменьшает выигрыш любого из игроков, при этом суммарный выигрыш в данном типе равновесия меньше суммарного выигрыша при выборе стратегии (K1;K2) обоими игроками. Однако в условиях данной модели при отсутствии обмена информацией между игроками отклонение от равновесия по Нэшу не будет реализовано в виду повышенного риска того, что второй игрок может воспользоваться ситуацией и не выбрать стратегию K.

Военное дело

Концепция взаимного гарантированного уничтожения. Ни одна из сторон, владеющих ядерным оружием, не может ни безнаказанно начать конфликт, ни разоружиться в одностороннем порядке.

См. также

Примечания

  1. Univertv — Равновесие Нэша: шоппинг, репутация, голосование Архивная копия от 13 декабря 2009 на Wayback Machine.
  2. 2,0 2,1 Джеймс С. Коулман. Экономическая социология с точки зрения теории рационального выбора // Экономическая социология : электронный журнал. — 2004. — Т. 5, № 3. — С. 35—44.
  3. «Nash’s Nobel prize» Архивная копия от 26 мая 2015 на Wayback Machine, The Economist, 24 May 2015.

Литература

  1. Васин А. А., Морозов В. В. Теория игр и модели математической экономики. — М.: МГУ, 2005, 272 с. ISBN 5-317-01388-7.
  2. Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. — М.: Наука, 1985
  3. Мазалов В. В. Математическая теория игр и приложения. — Изд-во Лань, 2010, 446 с.
  4. Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр. — СПб: БХВ-Петербург, 2012, 432 с.