Простое число Эйзенштейна

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Наименьшие простые числа Эйзенштейна. Точки на зеленых осях соответствуют натуральным простым числам вида 3n − 1. Все остальные, возведённые в квадрат, дают натуральное простое.

Простое число Эйзенштейна — число Эйзенштейна:

[math]\displaystyle{ z = a + b\,\omega\qquad(\omega = e^{2\pi i/3}) }[/math],

являющееся неприводимым (или, эквивалентно, простым) элементом Z[ω] в смысле теории колец. Делителями простых чисел Эйзенштейна являются только обратимые элементы (±1, ±ω, ±ω2), a + bω и их произведения.

Умножение на обратимый элемент и сопряжение любого простого числа Эйзенштейна также является простым числом Эйзенштейна.

Целое число Эйзенштейна z = a + bω является простым числом Эйзенштейна тогда и только тогда, когда выполняется одно из следующих взаимоисключающих условий:

  1. z является произведением обратимого элемента на натуральное простое вида 3n − 1,
  2. |z|2 = a2ab + b2 является натуральным простым (сравнимым с 0 или 1 по модулю 3).

Отсюда следует, что абсолютное значение квадрата любого целого числа Эйзенштейна является либо простым числом, либо квадратом простого числа.

Несколько первых простых чисел Эйзенштейна, равных натуральным простым 3n − 1:

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101 (последовательность A003627 в OEIS).

Все натуральные простые, сравнимые с 0 или 1 по модулю 3, не являются простыми Эйзенштейна: они разложимы на нетривиальные множители в Z[ω]. Примеры:

3 = −(1 + 2ω)2
7 = (3 + ω)(2 − ω).

Несколько простых чисел Эйзенштейна, не являющихся натуральными:

2 + ω, 3 + ω, 4 + ω, 5 + 2ω, 6 + ω, 7 + ω, 7 + 3ω.

С точностью до сопряжения и умножения на единицы, приведенные выше числа, вместе с 2 и 5, — это все простые числа Эйзенштейна, не превосходящие по абсолютному значению 7.

По состоянию на 2017 год наибольшим известным действительным простым числом Эйзенштейна является 10223 × 231172165 + 1, открытое проектом PrimeGrid[1].

Все большие известные простые являются простыми числами Мерсенна и были найдены с помощью GIMPS. Действительные простые Эйзенштейна сравнимы с 2 по модулю 3, а простые числа Мерсенна (за исключением наименьшего и них, 3) сравнимы с 1 по модулю 3. Таким образом, никакое простое число Мерсенна не является простым числом Эйзенштейна.

См. также

Ссылки

  1. Chris Caldwell, «The Top Twenty: Largest Known Primes Архивная копия от 12 июня 2018 на Wayback Machine» from The Prime Pages. Retrieved 2017-03-14.