Перейти к содержанию

Предельная норма замещения

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Преде́льная но́рма замеще́ния в микроэкономике — величина, определяющая количество товара, от которого потребитель готов отказаться ради увеличения другого товара на единицу. При этом происходит замещение одного товара другим, а интенсивность замещения как раз показывает предельная норма замещения. Предельную норму замещения обозначают через MRS (от англ. marginal rate of substitution) и вычисляют по формуле:

[math]\displaystyle{ MRS_{xy}=-(\Delta y/\Delta x) \,, }[/math]

где [math]\displaystyle{ x }[/math] — количество одного блага, [math]\displaystyle{ y }[/math] — количество другого блага, соответственно [math]\displaystyle{ \Delta x }[/math] и [math]\displaystyle{ \Delta y }[/math] изменение соответствующих благ.
Также предельная норма замещения может быть определена (при количественном (кардиналистском) подходе к теории полезности) через отношения предельных полезностей товаров [math]\displaystyle{ x }[/math] и [math]\displaystyle{ y }[/math]:

[math]\displaystyle{ MRS_{xy}=MU_x/MU_y }[/math]

Если опираться на понятие кривой безразличия (линия, показывающая все комбинации двух благ в выборе между которыми потребитель безразличен, то есть все эти комбинации приносят ему один и тот же уровень полезности), то предельную норму замещения можно рассматривать как наклон кривой безразличия. То есть считается, что для сохранения достигнутого уровня полезности потребитель может отказаться от какого-то одного блага для получения того же количества общей полезности путём потребления какого-то количества другого блага. Геометрически MRS равна тангенсу угла наклона касательной кривой безразличия в данной точке, взятому с обратным знаком.

Пример

Например, потребителю безразличен выбор между следующими наборами: три яблока и один апельсин — первый набор, и два яблока и два апельсина — второй набор. Хотя через эти две точки нельзя однозначно провести кривую безразличия, предельную норму замещения апельсинов яблоками можно посчитать следующим образом:

[math]\displaystyle{ MRS_{xy}=-\frac{\Delta y}{\Delta x}= -\frac{2-1}{2-3}=1\,, }[/math]

где [math]\displaystyle{ x }[/math] — количество яблок, [math]\displaystyle{ y }[/math] — количество апельсинов, соответственно [math]\displaystyle{ \Delta x }[/math] — изменение потребления яблок во втором наборе относительно первого, [math]\displaystyle{ \Delta y }[/math] — изменение потребления апельсинов во втором наборе относительно первого. То есть в данном примере предельная норма замещения апельсинов яблоками равна единице и потребитель готов сократить потребление яблок на единицу и увеличить потребление апельсинов на единицу, чтобы его удовлетворённость от потребления этих фруктов не изменилась.

А вот при переходе от набора 10:2 к набору 8:3 каких-то двух благ при условии, что эти точки лежат на одной кривой безразличия, предельная норма замещения первого блага вторым будет равна двум, [math]\displaystyle{ MRS = 2 }[/math].

См. также

Примечания