Полутранзитивный граф

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Граф Холта является наименьшим полутранзитивным графом. Недостаточность зеркальной симметрии на этом рисунке отражает факт, что рёбра не эквивалентны их симметричным.

Полутранзитивный граф — это граф, который и вершинно-транзитивен, и рёберно-транзитивен, но не симметричен[1]. Другими словами, граф полутранзитивен, если его группа автоморфизмов действует транзитивно как на вершины, так и на рёбра, но не на упорядоченные пары связанных вершин.

Любой связный симметричный граф должен быть вершинно-транзитивен и рёберно-транзитивен. Обратное верно для графов нечётной степени[2], так что полутранзитивные графы нечётной степени не существуют. Однако существуют транзитивные графы чётной степени[3]. Наименьшим полутранзитивным графом является граф Холта степени 4 с 27 вершинами[4][5].

Примечания

  1. Gross, Yellen, 2004, с. 491.
  2. Babai, 1996.
  3. Bouwer, 1970, с. 231—237.
  4. Biggs, 1993.
  5. Holt, 1981, с. 201–204.

Литература

  • Gross J.L. Yellen J. Handbook of Graph Theory. — CRC Press, 2004. — ISBN 1-58488-090-2.
  • Babai L. Automorphism groups, isomorphism, reconstruction // Handbook of Combinatorics / Graham R., Grötschel M., Lovász L. — Elsevier, 1996.
  • Norman Biggs. Algebraic Graph Theory. — 2nd. — Cambridge: Cambridge University Press, 1993. — ISBN 0-521-45897-8.
  • Derek F. Holt. A graph which is edge transitive but not arc transitive // Journal of Graph Theory. — 1981. — Т. 5, вып. 2. — doi:10.1002/jgt.3190050210.
  • Bouwer Z. Vertex and Edge Transitive, But Not 1-Transitive Graphs // Canad. Math. Bull.. — 1970. — Т. 13.