Опыт Хейнса — Шокли

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Установка для проведения опыта Хейнса, 1948
Форма сигнала на зонде-коллекторе. Узкий первый импульс совпадает по времени с передним фронтом импульса генератора.

Опыт Хейнса — Шокли — классический физический эксперимент[1], впервые доказавший существование тока неосновных носителей (дырочной проводимости в полупроводнике n-типа) в полупроводниках и позволивший измерить основные свойства дырок — скорость дрейфа и скорость диффузии. Опыт был поставлен Ричардом Хейнсом в лаборатории полупроводников Bell Labs в феврале 1948 года[2] и теоретически объяснён Уильямом Шокли. Статья Хейнса и Шокли с описанием опыта была опубликована в 1949 году в Physical Review[3].

Описание эксперимента

В своём первом опыте Хейнс использовал стержень из германия с электронным типом проводимости длиной 25 мм и поперечным сечением около 8 мм². Концы стержня были подключены к батарее, порождавшей в стержне ток электронов (справа налево, из минуса — в плюс). Левый по схеме скользящий контакт-зонд (аналог эмиттера точечного транзистора) был подключен к генератору коротких импульсов тока положительной полярности, правый контакт-зонд (аналог коллектора) был подключен к осциллографу, синхронизируемому генератором в ждущем режиме[4].

Если бы стержень был изготовлен не из полупроводника, а из металла, то в нём бы протекал только ток электронов, и наблюдаемый на экране осциллографа импульс совпадал бы по времени с импульсом тока генератора. Но в эксперименте с германиевым стержнем на экране осциллографа наблюдалось два импульса. Первый из них, узкий импульс тока замыкания, совпадал по времени с передним фронтом импульса генератора, второй (импульс дырочного тока) значительно оставал от импульса генератора и имел размытую, колоколообразную форму. Задержка и ширина второго импульса увеличивались с ростом расстояния между зондами. При изменении полярности батареи второй (размытый) импульс не наблюдался[4].

Шокли объяснил увиденное тем, что эмиттер инжектирует в стержень не электроны, а дырки. Инжектированные дырки дрейфуют в сторону отрицательного полюса батареи (вправо) со скоростью, прямо пропорциональной напряжённости поля в полупроводнике. Время дрейфа между двумя зондами пропрорционально расстоянию между ними. Одновременно, хаотичные тепловые перемещения дырок (диффузия) приводят к размыванию формы импульса[5]. За время дрейфа группы инжектированных дырок между двумя зондами «она может распространиться по всему поперечному сечению образца и вдоль него на величину, кратную нескольким его диаметрам»[4]. При изменении полярности батареи дырки движутся в сторону, противоположную коллектору (влево от эмиттера) — поэтому расположенный справа от эмиттера коллектор «не видит» импульса дырочного тока[5].

Измерения, проведённые на кремнии и германии разных типов проводимости, подтвердили положение статистической физики о том, что подвижность μ (зависимость скорости дрейфа от напряжённости поля) и электронов, и дырок связана с коэффициентом диффузии D простым отношением:

D = μ (kT/q), где kT/q — электрический потенциал, соответствующий средней тепловой энергии электрона, и равный 25 мВ при комнатной температуре.

Смысл его таков, что электрон, участвующий в беспорядочном тепловом движении, способен преодолеть потенциальный барьер с высотой, равной в среднем 0,025 В. Другими словами, 0,025 В — это электрический потенциал, соответствующий средней тепловой энергии электрона. То обстоятельство, что указанное отношение равно 0,025 В, показывает, что заряд носителей, дрейф и диффузия которых исследуются в опыте Хайнса, равен по величине заряду электрона[6].

Уравнения для токов

Чтобы увидеть эффект, рассмотрим полупроводник n-типа длиной d. Нас будут интересовать такие характеристики носителей тока как подвижность, коэффициент диффузии и время релаксации. Удобно рассматривать одномерную задачу (векторы опущены для простоты).

Уравнения для электронного и дырочного токов записываются в виде:

[math]\displaystyle{ j_e=-\mu_n n E-D_n \frac{\partial n}{\partial x} }[/math]
[math]\displaystyle{ j_p=+\mu_p p E-D_p \frac{\partial p}{\partial x} }[/math]

где je(p) — плотность тока для электронов (e) и дырок(p), μe(p) — соответствующие подвижности, E — электрическое поле, n и p — плотности носителей заряда, De(p) — коэффициенты диффузии, x — независимая координата. Первое слагаемое в каждом уравнении линейное по электрическому полю соответствует дрейфовой составляющей полного тока, а второе — пропорциональное градиенту концентрации — диффузии.

Вывод

Рассмотрим уравнение непрерывности:

[math]\displaystyle{ \frac{\partial n}{\partial t}=\frac{-(n-n_0)}{\tau_n}-\frac{\partial j_e}{\partial x} }[/math]
[math]\displaystyle{ \frac{\partial p}{\partial t}=\frac{-(p-p_0)}{\tau_p}-\frac{\partial j_p}{\partial x}. }[/math]

Индекс 0 указывает равновесные концентрации. Электроны и дырки рекомбинируют с временем жизни носителей τ.

Определим

[math]\displaystyle{ p_1=p-p_0\,,\quad n_1=n-n_0 }[/math]

поэтому приведённая выше система уравнений преобразуется к виду:

[math]\displaystyle{ \frac{\partial p_1}{\partial t}=D_p \frac{\partial^2 p_1}{\partial x^2}-\mu_p p \frac{\partial E}{\partial x}- \mu_p E \frac{\partial p_1}{\partial x}-\frac{p_1}{\tau_p} }[/math]
[math]\displaystyle{ \frac{\partial n_1}{\partial t}=D_n \frac{\partial^2 n_1}{\partial x^2}+\mu_n n \frac{\partial E}{\partial x}+ \mu_n E \frac{\partial n_1}{\partial x}-\frac{n_1}{\tau_n} }[/math]

В простейшем приближении, можно считать электрическое поле постоянным между левым и правым электродами и пренебречь ∂E/∂x, однако, электроны и дырки диффундируют с разными скоростями, и материал имеет локальный электрический заряд, вызывая неоднородное распределение электрического поля, которое может быть рассчитано из закона Гаусса:

[math]\displaystyle{ \frac{\partial E}{\partial x}= \frac{\rho}{\epsilon \epsilon_0}=\frac{e_0 ((p-p_0)-(n-n_0))}{\epsilon \epsilon_0} = \frac{e_0 (p_1-n_1)}{\epsilon \epsilon_0} }[/math]

где ε — диэлектрическая проницаемость полупроводника, ε0 — диэлектрическая проницаемость вакуума, ρ — плотность заряда, и e0 — элементарный заряд.

сделаем замену переменных:

[math]\displaystyle{ p_1 = n_\text{mean}+\delta\,,\quad n_1 = n_\text{mean}-\delta\,, }[/math]

и пусть δ будет гораздо меньше, чем [math]\displaystyle{ n_\text{mean} }[/math]. Два исходных уравнений запишутся в виде:

[math]\displaystyle{ \frac{\partial n_\text{mean}}{\partial t}=D_p \frac{\partial^2 n_\text{mean}}{\partial x^2}-\mu_p p \frac{\partial E}{\partial x}- \mu_p E \frac{\partial n_\text{mean}}{\partial x}-\frac{n_\text{mean}}{\tau_p} }[/math]
[math]\displaystyle{ \frac{\partial n_\text{mean}}{\partial t}=D_n \frac{\partial^2 n_\text{mean}}{\partial x^2}+\mu_n n \frac{\partial E}{\partial x}+ \mu_n E \frac{\partial n_\text{mean}}{\partial x}-\frac{n_\text{mean}}{\tau_n} }[/math]

Используя соотношение Эйнштейна [math]\displaystyle{ \mu=e\beta D }[/math], где β — величина обратная произведению температуры и постояннай Больцмана, эти два уравнения можно объединить:

[math]\displaystyle{ \frac{\partial n_\text{mean}}{\partial t}=D^* \frac{\partial^2 n_\text{mean}}{\partial x^2}- \mu^* E \frac{\partial n_\text{mean}}{\partial x}-\frac{n_\text{mean}}{\tau^*}, }[/math]

где для D*, μ* and τ* справедливо:

[math]\displaystyle{ D^*=\frac{D_n D_p(n+p)}{p D_p+nD_n} }[/math], [math]\displaystyle{ \mu^*=\frac{\mu_n\mu_p(n-p)}{p\mu_p+n\mu_n} }[/math] and [math]\displaystyle{ \frac{1}{\tau^*}=\frac{p\mu_p\tau_p+n\mu_n\tau_n}{\tau_p\tau_n(p\mu_p+n\mu_n)}. }[/math]

Учитывая, n >> p или p → 0 (что справедливо для полупроводников только с малой концентрацией неосновных носителей), D* → Dp, μ* → μp и 1/τ* → 1/τp. Полупроводник ведет себя, как если бы только дырки двигались в нём.

Окончательное выражение для носителей:

[math]\displaystyle{ n_\text{mean}(x,t)=A \frac{1}{\sqrt{4\pi D^* t}} e^{-t/\tau^*} e^{-\frac{(x+\mu^*Et-x_0)^2}{4D^*t}} }[/math]

Его можно интерпретировать как дельта-функцию, которая создается сразу же после импульса. Дырки затем начать двигаться к противоположному электроду, где их детектируют. Сигнал при этом приоретает форму гауссиана.

Параметры μ, D и τ можно получить из анализа формы сигнала.

[math]\displaystyle{ \mu^*=\frac{d}{E t_0}\,, }[/math]
[math]\displaystyle{ D^*=(\mu^* E)^2 \frac{(\delta t)^2}{16 t_0}\,, }[/math]

где d — расстояние дрейфа за время t0, и δt — ширина импульса.

Примечания

  1. Krenz, Jerrold H. Electronic concepts: an introduction. — Cambridge University Press, 2000. — P. 137. — ISBN 978-0-521-66282-6. Архивная копия от 7 июля 2022 на Wayback Machine
  2. Foundations of the Information Age: The Transistor. AT&T. Дата обращения: 29 августа 2012. Архивировано 29 октября 2012 года.
  3. Haynes and Shockley, 1949.
  4. 4,0 4,1 4,2 Шокли, 1958, с. 165.
  5. 5,0 5,1 Шокли, 1958, с. 165—166.
  6. Шокли, 1958, с. 166.

Источники