Дистилляция
Дистилля́ция (лат. stillare — «стекание каплями» от лат. stilla — «капля» и приставки «de-», означающей «убирание»[1]) — перегонка, испарение жидкости с последующим охлаждением и конденсацией паров. Дистилляцию рассматривают прежде всего как технологический процесс разделения и рафинирования многокомпонентных веществ — в ряду других процессов с фазовым превращением и массообменом: сублимация, кристаллизация, жидкостная экстракция и некоторых других. Различают дистилляцию с конденсацией пара в жидкость (при которой получаемый дистиллят имеет усреднённый состав вследствие перемешивания) и дистилляцию с конденсацией пара в твёрдую фазу (при которой в конденсате возникает распределение концентрации компонентов). Продуктом дистилляции является дистиллят или остаток (или и то, и другое) — в зависимости от дистиллируемого вещества и целей процесса. Основными деталями дистилляционного устройства являются обогреваемый контейнер (куб) для дистиллируемой жидкости, охлаждаемый конденсатор (холодильник) и соединяющий их обогреваемый паропровод.
История
Первые сведения о дистилляции относятся к I веку и упоминаются в работах греческих алхимиков в Александрии (Египет)[2]. В XI веке, у Авиценны, дистилляция упоминается как метод получения эфирных масел. C середины XIX века разрабатывается ректификация.
Применение
Дистилляция применяется в промышленности и в лабораторной практике для разделения и рафинирования сложных веществ: для разделения смесей органических веществ (например, разделение нефти на бензин, керосин, дизельное топливо и др.; получение душистых веществ в парфюмерии; очистка этилового спирта) и для получения высокочистых неорганических веществ (например, металлов: бериллия, свинца, цинка, магния, кадмия, ртути; и неметаллов: серы, селена и др.).
Теория дистилляции
В теории дистилляции в первую очередь рассматривается разделение смесей двух веществ[1]. Принцип дистилляции основан на том, что концентрация [math]\displaystyle{ C_1 }[/math] некоторого компонента в жидкости отличается от его концентрации [math]\displaystyle{ C_2 }[/math] в паре этой жидкости. Отношение [math]\displaystyle{ \beta }[/math]=[math]\displaystyle{ C_2/C_1 }[/math] является характеристикой процесса и называется коэффициентом разделения (или распределения) при дистилляции. (Также коэффициентом разделения при дистилляции называют величину [math]\displaystyle{ \alpha=1/\beta }[/math]). Коэффициент разделения зависит от природы разделяемых компонентов и условий дистилляции. В зависимости от условий дистилляции различают идеальный (определяемый только парциальными давлениями паро́в чистых компонентов), равновесный (когда число частиц, покидающих в единицу времени жидкость, равно числу частиц, возвращающихся в это же время в жидкость) и эффективный коэффициенты разделения. Практически дистилляция веществ сильно зависит от интенсивности перемешивания жидкости, а также от взаимодействия примесей с основным компонентом и с другими примесными компонентами с образованием соединений (в связи с чем дистилляция считается физико-химическим процессом). Эффективный коэффициент разделения смеси «основное вещество — примесь» может на несколько порядков отличаться от идеального коэффициента разделения.
Режимы дистилляции характеризуются температурой испарения и степенью отклонения от фазового равновесия жидкость-пар. Обычно в дистилляционном процессе [math]\displaystyle{ n=n_1+n_c }[/math], где [math]\displaystyle{ n }[/math] — число частиц вещества, переходящих в единицу времени из жидкости в пар, [math]\displaystyle{ n_1 }[/math] — число частиц, возвращающихся в это же время из пара в жидкость, [math]\displaystyle{ n_c }[/math] — число частиц, переходящих в это время в конденсат. Отношение [math]\displaystyle{ n_c/n }[/math] является показателем отклонения процесса от равновесного. Предельными являются режимы, в которых [math]\displaystyle{ n_c=0 }[/math] (равновесное состояние системы жидкость-пар) и [math]\displaystyle{ n_c=n }[/math] (режим молекулярной дистилляции).
Идеальный коэффициент разделения двухкомпонентного вещества может быть выражен через давления [math]\displaystyle{ p_1^0 }[/math] и [math]\displaystyle{ p_2^0 }[/math] чистых компонентов при температуре процесса: [math]\displaystyle{ \beta_i=p_2/p_1 }[/math]. С учётом коэффициентов активности компонентов [math]\displaystyle{ \gamma_1 }[/math] и [math]\displaystyle{ \gamma_2 }[/math], отражающих взаимодействие компонентов в жидкости, коэффициент разделения [math]\displaystyle{ \beta=\gamma_2p_2^0/\gamma_1p_1^0 }[/math]. Коэффициенты активности имеют температурную и концентрационную зависимости (см. активность (химия)). С понижением температуры значение коэффициента разделения обычно удаляется от единицы, то есть эффективность разделения при этом увеличивается.
При [math]\displaystyle{ n_c=n }[/math] все испаряющиеся частицы переходят в конденсат (режим молекулярной дистилляции). В этом режиме коэффициент разделения [math]\displaystyle{ \beta_m=\beta\sqrt{M_1}/\sqrt{M_2} }[/math], где [math]\displaystyle{ M_1 }[/math] и [math]\displaystyle{ M_2 }[/math] — молекулярные массы первого и второго компонентов соответственно. Определение молекулярного режима дистилляции возможно по величине [math]\displaystyle{ N=h/(K\lambda) }[/math], где [math]\displaystyle{ h }[/math] — расстояние от испарителя до конденсатора, [math]\displaystyle{ \lambda }[/math] — длина свободного пробега молекул дистиллируемого вещества, [math]\displaystyle{ K }[/math] — константа, зависящая от конструкции аппарата. При [math]\displaystyle{ N\lt 0{,}25 }[/math] наблюдается молекулярное испарение, при [math]\displaystyle{ N\gt 4 }[/math] между жидкостью и паром устанавливается динамическое равновесие, а при других значениях [math]\displaystyle{ N }[/math] испарение имеет промежуточный характер. Режим молекулярной дистилляции может применяться в различных дистилляционных способах, включая ректификацию. Обычно молекулярная дистилляция осуществляется в вакууме при низком давлении пара и при близком расположении поверхности конденсации к поверхности испарения (что исключает столкновение частиц пара друг с другом и с частицами атмосферы). В режиме, близком к молекулярной дистилляции, проводится дистилляция металлов. В связи с тем, что коэффициент разделения при молекулярной дистилляции зависит не только от парциальных давлений компонентов, но и от их молекулярных (или атомных) масс, молекулярная дистилляция может применяться для разделения смесей, для которых [math]\displaystyle{ \beta=1 }[/math], — азеотропных смесей, включая смеси изотопов.
В общем случае, математическое описание дистилляции (и сублимации) представляется в виде системы уравнений, содержащих два параметра: эффективный коэффициент разделения β и диффузионное число Пекле Ре=w(T)X / ρD(T), где w - скорость испарения вещества с единицы поверхности; D - коэффициент диффузии примеси; X - размерный фактор испаряемого материала (например, толщина слоя испаряемого материала); ρ - плотность вещества. Ввиду сложности уравнений, их решение может быть найдено только численными методами. В простом случае, когда дистилляция осуществляется в условиях интенсивного перемешивания испаряемой жидкости (и конденсата), когда Ре=0 или мало, уравнения, связывающие содержание второго компонента в конденсате [math]\displaystyle{ C/C_0 }[/math] и в остатке [math]\displaystyle{ C_r/C_0 }[/math] с долей перегонки [math]\displaystyle{ G/G_0 }[/math] или с долей остатка [math]\displaystyle{ G_r/G_0 }[/math] при заданных условиях процесса и известной начальной концентрации [math]\displaystyle{ C_0 }[/math] жидкости ([math]\displaystyle{ G }[/math], [math]\displaystyle{ G_r }[/math] и [math]\displaystyle{ G_0 }[/math] — масса конденсата и остатка, а также начальная масса дистиллируемого вещества соответственно), имеют простой вид с одним параметром β.
При дистилляции вещества с большой концентрацией компонентов (с конденсацией пара в жидкость), при несильной зависимости коэффициентов активности компонентов от их концентраций взаимосвязь величин [math]\displaystyle{ G/G_0 }[/math], [math]\displaystyle{ C }[/math] и [math]\displaystyle{ C_0 }[/math], когда используются концентрации в процентах, имеет вид:
- [math]\displaystyle{ \operatorname{lg}\tfrac{G}{G_0}=\tfrac{1}{\beta-1}\operatorname{lg}\tfrac{C}{C_0}-\tfrac{\beta}{\beta-1}\operatorname{lg}\tfrac{100-C}{100-C_0}. }[/math]
Для дистилляции с конденсацией пара в жидкость при малом содержании примеси
- [math]\displaystyle{ C/C_0=\tfrac{1-(1-G/G_0)^\beta}{G/G_0}, }[/math]
- [math]\displaystyle{ C_r/C_0 }[/math]=[math]\displaystyle{ (G_r/G_0)^{\beta-1}, }[/math]
где [math]\displaystyle{ \beta }[/math] — коэффициент разделения.
Также выведены уравнения распределения компонентов в твёрдом конденсате, получаемого дистилляцией с направленным затвердеванием конденсата или зонной дистилляцией.
Отмечено, что дистилляционные уравнения описывают не только процессы распределения компонентов в системах "жидкость - пар", но и в других контактирующих фазах (например, переходы "жидкий кристалл - кристалл", "жидкий кристалл-жидкость", "газ - плазма", а также переходы, связанные с квантово-механическими состояниями — сверхтекучая жидкость, конденсат Бозе — Эйнштейна) — при подстановке в них соответствующих коэффициентов разделения.
Дистилляция с конденсацией пара в жидкость
Простая перегонка — частичное испарение жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость — кубовым остатком.
Фракционная дистилляция (или дробная перегонка) — разделение многокомпонентных жидких смесей на отличающиеся по составу части, фракции, путём сбора конденсата частями с различной летучестью, начиная с первой, обогащенной низкокипящим компонентом. Остаток жидкости обогащён высококипящим компонентом. Для улучшения разделения фракций применяют дефлегматор.
Ректификация — способ дистилляции, при котором часть жидкого конденсата (флегма) постоянно возвращается в куб, двигаясь навстречу пару в колонне. В результате этого примеси, содержащиеся в паре, частично переходят во флегму и возвращаются в куб, при этом чистота пара (и конденсата) повышается.
Дистилляция с конденсацией пара в твёрдую фазу
Дистилляция с конденсацией пара в градиенте температуры — дистилляционный процесс, в котором конденсация в твёрдую фазу осуществляется на поверхности, имеющей градиент температуры, с многократным реиспарением частиц пара. Менее летучие компоненты осаждаются при более высоких температурах. В результате в конденсате возникает распределение примесей вдоль температурного градиента, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Разделение компонентов пара при реиспарении подчиняется собственным закономерностям. Так, при молекулярной дистилляции соотношение между количествами [math]\displaystyle{ Q_1 }[/math] и [math]\displaystyle{ Q_2 }[/math] осаждённых в конденсаторе первого и второго компонентов, соответственно, выражается равенством:
- [math]\displaystyle{ Q_1/Q_2=(\mu\eta_1W^0_1-W_1)/(\mu\eta_2W^0_2-W_2), }[/math]
где [math]\displaystyle{ W^0_1 }[/math] и [math]\displaystyle{ W_1 }[/math] — скорости испарения первого компонента из расплава и с поверхности реиспарения соответственно, [math]\displaystyle{ W^0_2 }[/math] и [math]\displaystyle{ W_2 }[/math] — то же для второго компонента, [math]\displaystyle{ \eta_1 }[/math] и [math]\displaystyle{ \eta_2 }[/math] — коэффициенты конденсации первого и второго компонентов соответственно, [math]\displaystyle{ \mu }[/math] — коэффициент, зависящий от поверхности испарения и углов испарения и реиспарения. Реиспарение повышает эффективность очистки от трудноудаляемых малолетучих примесей в 2—5 раз, а от легколетучих — на порядок и более (по сравнению с простой перегонкой). Этот вид дистилляции нашёл применение в промышленном производстве высокочистого бериллия.
Дистилляция с направленным затвердеванием конденсата (дистилляция с вытягиванием дистиллята) — дистилляционный процесс в контейнере удлинённой формы c полным расплавлением дистиллируемого вещества и конденсацией пара в твёрдую фазу по мере вытягивания конденсата в холодную область. Процесс разработан теоретически.
В получаемом конденсате возникает неравномерное распределение примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс является дистилляционным аналогом нормальной направленной кристаллизации. Распределение примеси в конденсате описывается уравнением:
- [math]\displaystyle{ C/C_0=\beta(1-x/L)^{\beta-1}, }[/math]
где [math]\displaystyle{ C }[/math] — концентрация примеси в дистилляте на расстоянии [math]\displaystyle{ x }[/math] от начала, [math]\displaystyle{ L }[/math] — высота конденсата при полностью испарившемся дистиллируемом материале.
Зонная дистилляция — дистилляционный процесс в контейнере удлинённой формы c расплавлением только верхней части рафинируемого вещества в перемещаемой вниз жидкой зоне, с конденсацией пара в твёрдую фазу по мере выхода конденсата в холодную область. Процесс разработан теоретически.
При движении зонного нагревателя вдоль контейнера сверху вниз в контейнере формируется твёрдый конденсат с неравномерным распределением примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс может быть повторён многократно, для чего конденсат, полученный в предыдущем процессе, должен быть перемещён (без переворота) в нижнюю часть контейнера на место рафинируемого вещества. Неравномерность распределения примесей в конденсате (то есть эффективность очистки) растёт с увеличением числа повторений процесса.
Зонная дистилляция является дистилляционным аналогом зонной перекристаллизации. Распределение примесей в конденсате описывается известными уравнениями зонной перекристаллизации с заданным числом проходов зоны — при замене коэффициента распределения [math]\displaystyle{ k }[/math] для кристаллизации на коэффициент разделения [math]\displaystyle{ \alpha }[/math] для дистилляции. Так, после одного прохода зоны
- [math]\displaystyle{ C/C_0=1-(1-\beta)\exp(-\beta }[/math][math]\displaystyle{ x/\lambda), }[/math]
где [math]\displaystyle{ C }[/math] — концентрация примеси в конденсате на расстоянии [math]\displaystyle{ x }[/math] от начала конденсата, [math]\displaystyle{ \lambda }[/math] — длина жидкой зоны.
Экстрактивная дистилляция (дистилляция с добавочным компонентом) и другие специальные приёмы дистилляции
Эффективность дистилляционной очистки может быть повышена введением в систему основа-примесь добавочного компонента (обычно в концентрации 0,5…10 %), который изменяет относительную летучесть примеси. Разновидностью метода является дистилляция в атмосфере активного вещества, прежде всего — водяного пара.
Применяются и другие специальные приёмы повышения эффективности однократной дистилляции - такие как горячий конденсатор, конденсатор с градиентом температуры, создание на поверхности испаряемой жидкости слоя оксида.
Отмечается, что эффективность применения специальных приёмов дистилляции зависит от величины идеального коэффициента разделения в дистиллируемой двойной системе: она меньше в системах, для которых идеальный коэффициент разделения ближе к единице.
См. также
- Дефлегмация
- Ректификация
- Коэффициент разделения
- Ректификационная колонна
- Дистилляция термокомпрессионная
- Экстрактивная дистилляция
- Самогон
Примечания
- ↑ 1,0 1,1 Дистилляция / В. Л. Пебалк // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Forbes, Robert James. A short history of the art of distillation: from the beginnings up to the death of Cellier Blumenthal (англ.). — BRILL, 1970. — ISBN 978-90-04-00617-1.
Литература
- Дытнерский Ю. И. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 2. В 2-х кн. Часть 2. Массообменные процессы и аппараты. М.: Химия, 1995. — 368 с.
- Гельперин Н. И. Основные процессы и аппараты химической технологии. — М.: Химия, 1981. — 812 с.
- Девятых Г. Г., Еллиев Ю. Е. Введение в теорию глубокой очистки веществ. — М.: Наука, 1981. — 320 с.
- Девятых Г. Г., Еллиев Ю. Е. Глубокая очистка веществ. — М.: Высшая школа, 1990. — 192 с.
- Емельянов В. С., Евстюхин А. И., Шулов В. А. Теория процессов получения чистых металлов, сплавов и интерметаллидов. — М.: Энергоатомиздат, 1983. — 144 с.
- Жаров В. Т., Серафимов Л. А. Физико-химические основы дистилляции и ректификации. — Л.: Химия, 1975. — 240 с.
- Степин Б. Д., Горштейн И. Г., Блюм Г. З., Курдюмов Г. М., Оглоблина И. П. Методы получения особо чистых неорганических веществ. — Л.: Химия, 1969. — 480 с.
- Сийрде Э. К., Теаро Э. Н., Миккал В. Я. Дистилляция. — Л.: Химия, 1971. — 216 с.
- Калашник О. Н., Нисельсон Л. А. Очистка простых веществ дистилляцией с гидротермальным окислением примесей // Высокочистые вещества, 1987. — № 2. — С. 74—78.
- Корякин Ю. В., Ангелов И. И. Чистые химические вещества. Руководство по приготовлению неорганических реактивов и препаратов в лабораторных условиях. — М.: Химия, 1974.
- Беляев А. И. Физико-химические основы очистки металлов и полупроводниковых веществ. — М.: Металлургия, 1973. — 224 с.
- Нисельсон Л. А., Лапин Н. В., Бежок В. С. Определение относительных летучестей примесей в жидком германии // Высокочистые вещества, 1989. — N. 6. — С. 33—38 [Содержатся сведения о коэффициенте f скорости испарения вещества — со ссылкой на: Borrows G. // Trans. Inst. Chem. Eng., 1954. — V. 32. — P. 23.]
- Пазухин В. А., Фишер А. Я. Разделение и рафинирование металлов в вакууме. — М.: Металлургия, 1969. — 204 с.
- Иванов В. Е., Папиров И. И., Тихинский Г. Ф., Амоненко В. М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). — М.: Металлургия, 1965. — 263 с.
- Несмеянов А. Н. Давление пара химических элементов. — М.: Издательство АН СССР, 1961. — 320 с.
- Есютин В. С., Нургалиев Д. Н. Вакуум-дистилляционная очистка свинца от примесей в аппарате непрерывного действия // Цветные металлы, 1975. — № 12. — С. 28-30.
- Кравченко А. И. О временной зависимости состава двойного сплава при его разгонке в вакууме // Известия АН СССР. Серия: Металлы. — 1983. — № 3. — С. 61—63.
- Кравченко А. И. Об уравнениях дистилляции при малом содержании примеси // Вопросы атомной науки и техники, 1990. — № 1 — Серия: «Ядерно-физические исследования» (9). — С. 29—30.
- Нисельсон Л. Я., Ярошевский А. Г. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). — М.: Наука, 1992. — 399 с.
- Kravchenko A.I. Simple substances refining: efficiency of distillation methods // Functional Materials, 2000 — V. 7. — N. 2. — P. 315—318.
- Кравченко А. И. Уравнение распределения примеси в твёрдом дистилляте // Неорганические материалы, 2007. — Т. 43. — № 8. — С. 1021—1022.
- Кравченко А. И. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы, 2010. — Т. 46. — № 1. — С. 99—101.
- Кравченко А. И. Дистилляция с вытягиванием дистиллята // Вопросы атомной науки и техники, 2008. — № 1 — Серия: «Вакуум, чистые материалы, сверхпроводники» (17). — С. 18—19. [1]
- Кравченко А. И. Зонная дистилляция // Вопросы атомной науки и техники, 2011. — № 6 — Серия: «Вакуум, чистые материалы, сверхпроводники» (19). — С. 24—26. [2]
- Кравченко А. И. Разработка перспективных схем зонной дистилляции // Перспективные материалы, 2014. — № 7. — С. 68-72. [www.j-pm.ru].
- Кравченко А. И. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // Вопросы атомной науки и техники, 2011. — № 6 — Серия: «Вакуум, чистые материалы, сверхпроводники» (19). — С. 27—29. [3]
- Кравченко А. И. Зависимость эффективного коэффициента разделения в некоторых металлических системах основа-примесь от степени перегонки // Неорганические материалы, 2015. — Т. 51. — № 2. — С. 146—147.
- Папиров И. И., Кравченко А. И., Мазин А. И., Шиян А. В., Вирич В. Д. Распределение примесей в сублимате магния // Неорганические материалы, 2015. — Т. 51. — № 6. — С. 625—627.
- Кириллов Ю. П., Кузнецов Л. А., Шапошников В. А. , Чурбанов М. Ф. Влияние диффузии на глубину очистки веществ дистилляцией // Неорганические материалы, 2015. — Т. 51. — № 11. — С. 1177—1189.
- Кравченко А. И. Соотношение между эффективным и идеальным коэффициентами разделения при дистилляции и сублимации // Неорганические материалы, 2016. — Т. 52. — № 4. — С. 423—430.
- Кириллов Ю. П., Шапошников В. А. , Кузнецов Л. А., Ширяев В. С. , Чурбанов М. Ф. Моделирование испарения жидких веществ и конденсации их паров при дистилляции // Неорганические материалы, 2016. — Т. 52. — № 11. — С. 1256—1261.
- Кравченко А. И. О температурной зависимости идеального коэффициента разделения в системах с близкой летучестью компонентов // Вопросы атомной науки и техники, 2016. — № 1 — Серия: «Вакуум, чистые материалы, сверхпроводники» (21). — С. 14—16.
- Папиров И. И., Кравченко А. И., Мазин А. И., Шиян А. В., Вирич В. Д. Распределения примесей в сублиматах магния // Вопросы атомной науки и техники, 2016. — № 1 — Серия: «Вакуум, чистые материалы, сверхпроводники» (21). — С. 21—22.
- Жуков А. И., Кравченко А. И. Расчёт сублимации с учётом диффузии примеси // Неорганические материалы, 2017. — Т. 53. — № 6. — С. 662—668.
- Кравченко А. И. О применимости идеального коэффициента разделения для расчёта дистилляции и сублимации // Вопросы атомной науки и техники, 2018. — № 1 — Серия: «Вакуум, чистые материалы, сверхпроводники» (22). — С. 14-17.
- Кравченко А. И. О рафинировании простых веществ дистилляцией с добавочным компонентом // Вопросы атомной науки и техники, 2018. — № 1 — Серия: «Вакуум, чистые материалы, сверхпроводники» (22). — С. 9—13.
- Кравченко А. И. Расчёт дистилляционного рафинирования вещества с легколетучей и труднолетучей примесями // Неорганические материалы, 2018. — Т. 54. — № 5. — С. 520—522.
- Кравченко А. И. Эффективность многократного дистилляционного или кристаллизационного рафинирования с заданным выходом // Неорганические материалы, 2020. — Т. 56. — № 10. — С. 1112-1116.
- Кравченко А. И., Жуков А.И. Температурная зависимость числа Пекле в процессах сублимации простых веществ // Неорганические материалы, 2021. — Т. 57. — № 7. — С. 789-795.
- Xiaoxin Zh., Semiramis F., Bernd F. Separation behavior of arsenic and lead from antimony during vacuum distillation and zone refining // Journal of Materials Research and Technology, 2020. V. 9. Is. 3. P. 4386-4398. [Дистилляция и зонная плавка сурьмы с добавочными компонентами Al и Zn.]
- Кравченко А. И. Критерии применимости многократного дистилляционного или кристаллизационного рафинирования взамен однократного при заданных производительности и выходе // Неорганические материалы, 2021. — Т. 57. — № 7. — С. 783-788.
- Кравченко А. И., Жуков А.И. Коэффициенты разделения и числа Пекле в испарительных процессах рафинирования веществ с простой основой при температурах вблизи от температур плавления // Неорганические материалы, 2022. — Т. 58. — № 8. — С. 891-896.
- ГОСТ 2177—99 (ASTM D86). Нефтепродукты. Методы определения фракционного состава.