Арсениды
Арсениды (лат. arsenicum — мышьяк), соединения мышьяка с более электроположительными элементами. Известны для всех металлов (и полуметаллов), кроме Sb, Bi, Pb и Tl.
Классификация
По номенклатуре ИЮПАК рекомендуется указывать систематическое название арсенидов:
- CaAs2 — диарсенид кальция;
- Ca3As2 — диарсенид трикальция;
В рациональной номенклатуре название строится добавлением слова мышьяковистый:
Физические свойства
Арсениды — кристаллические тугоплавкие соединения с металлическим блеском, обычно серебристо-белого или светло-серого цвета (иногда жёлтого или красного). Обладают полупроводниковой, полуметаллической или металлической (низшие арсениды) проводимостью. Некоторые арсениды переходных металлов, например Cr2As и Fe2As, — антиферромагнетики. Высокими точками Нееля отличаются CrAs (823 К), Mn2As (580 К). MnAs — ферромагнетик. Некоторые арсениды, например MoAs2, Pd2As, при температуре ниже 1 К становятся сверхпроводниками.
Типы арсенидов
Щелочные металлы образуют арсениды типов MAs и M3As. Для Na и К известны NaAs5 и KAs2.
Из элементов 11-й группы (подгруппа Iб) Сu образует плавящийся конгруэнтно Cu3As наряду с другими низшими (например, Cu8As, Cu6As) и высшими (например, CuAs) арсенидами.
Элементы II группы образуют арсениды типа M3As2, плавящиеся конгруэнтно, и высшие MAs2 (М — Be, Cd, Zn), MAs3 и MAs4 (М — щелочноземельный металл).
Элементы 13-й подгруппы (подгруппа IIIa), кроме Тl, образуют плавящиеся конгруэнтно моноарсениды MAs, кристаллизующиеся в структуре сфалерита. Это — полупроводники с понижающимися от В к In температурами плавления и уменьшающейся шириной запрещённой зоны. Для В известен также низший арсенид B6As.
Арсениды редкоземельных элементов изучены мало. Наиболее характерны для них моноарсениды MAs со структурой типа NaCl, диарсениды MAs2, а также M3As4. Наибольшее число арсенидов (8) известно для Еu. Для U и Th известны арсениды типов MAs, M3As4 и MAs2, а также U2As.
Элементы 14-й подгруппы (подгруппа IVa) (кроме С и Рb) образуют плавящиеся конгруэнтно MAs. Для Si и Ge также известны MAs2, для Sn — Sn3As4.
Для элементов подгруппы Ti (4-я подгруппа) характерны соединения M4As, MAs, MAs2.
Переходные металлы V—VII групп образуют арсениды состава M3As, M2As, M5As2, MAs, MAs2. Для этих элементов характерна тенденция к уменьшению числа образующихся арсенидов при переходе от четвёртого периода к пятому и шестому. Число арсенидов уменьшается также при переходе от V к VII группе и снова увеличивается при переходе к подгруппе Ni. Наибольшее число арсенидов известно для V (7) и для Ni (8), тогда как для Re и Os — только по одному (Re3As7 и OsAs2).
Существуют двойные арсениды: MM’As (например, NaCdAs и FeMnAs), MM2’As2 (CaNi2As2 и др.), MIIMIVAs2 (например, CdGeAs2) и др.
Известны тройные интерметаллические соединения и соли со сложными анионами, например XAs4 (X = Ge, Si, Zn, Co и др.), способными образовывать цепочечные, слоистые и каркасные структуры.
К арсенидам близки соединения с двумя электроотрицательными элементами в молекуле. Это арсенофосфиды MAsP и арсенохалькогениды, в частности арсеносульфиды MAsS. Большинство из них — полупроводники.
Химические свойства
Арсениды щелочных металлов гидролизуются водой с выделением очень ядовитого газа арсина, реагируют с влагой воздуха, поэтому эти соединения должны храниться исключительно в герметичной таре без доступа воздуха и воды, манипуляции с ними допустимы только в герметичных боксах:
- [math]\displaystyle{ \mathsf{Na_3As + 3H_2O \ \xrightarrow{}\ 3NaOH + AsH_3\uparrow } }[/math]
Арсениды щелочноземельных металлов с водой реагируют медленно, легко — с разбавленными кислотами:
- [math]\displaystyle{ \mathsf{Ba_3As_2 + 6H_2O \ \xrightarrow{}\ 3Ba(OH)_2 + 2AsH_3\uparrow } }[/math]
- [math]\displaystyle{ \mathsf{AlAs + 3HCl \ \xrightarrow{}\ AlCl_3 + AsH_3\uparrow } }[/math]
Арсениды переходных металлов (d-элементов), как правило, с водой практически не взаимодействуют, реагируют с кислотами и при сплавлении — со щелочами.
С увеличением атомного содержания мышьяка в молекуле химическая стойкость арсенидов увеличивается. При действии окислителей или при нагревании на воздухе арсениды окисляются до арсенатов(III) или до оксида мышьяка As2O3.
- [math]\displaystyle{ \mathsf{WAs_2 + 3O_2 \ \xrightarrow{T}\ WO_3 + As_2O_3 } }[/math]
Высшие арсениды при нагревании теряют часть As, переходя в низшие арсениды.
Получение
Арсениды получают чаще всего сплавлением As с соответствующим металлом в вакууме, инертной атмосфере, под давлением пара As или под слоем флюса, например В9О3, а также действием пара As на металлы.
- [math]\displaystyle{ \mathsf{Mn + As \ \xrightarrow{T}\ MnAs } }[/math]
Для получения мелких кристаллов или плёнок используют химические транспортные реакции.
Арсениды могут быть получены взаимодействием AsCl3 с металлами, AsH3 с их оксидами, растворами солей или с металлоорганических соединений, сплавлением As с галогенидами металлов, восстановлением арсенатов(V) или арсенатов(III) металлов водородом, взаимодействием As с растворами металлов в жидком аммиаке NH3 и др.
Нахождение в природе
Известно около 25 природных минералов, относящихся к арсенидам. Важнейшие из них:
- Арсенопирит FeAsS
- Лёллингит FeAs2
- Глаукодот (Co, Fe)AsS
- Кобальтин CoAsS
- Смальтин CoAs3-x (другие названия шмальтин CoAs3−2, саффлорит CoAs2)
- Герсдорфит (герсфордит) NiAsS
- Никелин (минерал) NiAs
- Раммельсбергит (крутовит) NiAs2
- Сперрилит PtAs2
Применение
Арсениды применяют в основном как полупроводниковые материалы, важнейший из них — арсенид галлия. Иногда применяют в качестве зооцидов для уничтожения грызунов.
Безопасность
Основную опасность при работе с арсенидами представляет ядовитый газ арсин, образующийся при взаимодействии арсенидов с влагой воздуха, при их травлении кислотами и т. п.
Литература
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.
- Лидин Р.А. и др. Номенклатура неорганических веществ. — М.: КолосС, 2006. — 95 с. — ISBN 5-9532-0446-9.
- Некрасов Б. В. Основы общей химии.. — 3-е изд., испр. и доп.. — М.: «Химия», 1973. — Т. 1. — 656 с.