HEPA

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Схема HEPA-фильтра с описанием

HEPA (англ. High Efficiency Particulate Air или High Efficiency Particulate Arrestance — высокоэффективное удержание частиц[1]) — вид воздушных фильтров высокой эффективности. Используются в пылесосах, системах очистки воздуха и системах вентиляции и кондиционирования воздуха.

Фильтры такого типа начали использоваться в 40-х годах в США во время развития ядерного проекта. Они применялись для улавливания радиоактивных частиц на предприятиях ядерной промышленности. Примерно в то же время в СССР были независимо разработаны и начали использоваться аналогичные фильтры, известные под названием «фильтры Петрянова-Соколова».

Фильтр изготовлен из длинного листа волокнистого материала (диаметр волокон 0,65−6,5 микрон, расстояние между ними 10−40 микрон), сложенного гармошкой, а также корпуса с элементами, удерживающими лист в сложенном состоянии.

Эффективность HEPA-фильтров оценивают по количеству частиц размером до 0,06 микрона на литр воздуха, которые выбрасываются обратно в среду после прохождения фильтра. Классы фильтров: HEPA 10 (50000), HEPA 11 (5000), HEPA 12 (500), HEPA 13 (50), HEPA 14 (5)[2]

В соответствии с ГОСТ Р ЕН 1822-1-2010 фильтры систем вентиляции и кондиционирования воздуха из фильтрующего материала, способного к электризации, классифицируют в соответствии с таблицей 1, основываясь на эффективности или проскоке в разряженном состоянии.

Классификация ЕРА, HEPA и ULPA фильтров
группа HEPA-класс
фильтра
интегральное значение, % локальное значение, %
эффективность проскок эффективность проскок
EPA Е 10 ≥ 85 ≤ 15
Е 11 ≥ 95 ≤ 5
Е 12 ≥ 99,5 ≤ 0,5
HEPA Н 13 ≥ 99,95 ≤ 0,05 ≥ 99,75 ≤ 0,25
Н 14 ≥ 99,995 ≤ 0,005 ≥ 99,975 ≤ 0,025
ULPA U 15 ≥ 99,9995 ≤ 0,0005 ≥ 99,9975 ≤ 0,0025
U 16 ≥ 99,99995 ≤ 0,00005 ≥ 99,99975 ≤ 0,00025
U 17 ≥ 99,999995 ≤ 0,000005 ≥ 99,9999 ≤ 0,0001

Принцип работы

Зависимость эффективности фильтрации от размера пылинок
Четыре механизма улавливания пылинок в волокнистом фильтре

HEPA-фильтры образованы системой волокон сложной формы. Обычно используются стеклопластиковые волокна с диаметром от 0,5 до 2 мкм. Основные факторы, влияющие на работу — диаметр волокна и толщина фильтра. Воздушное пространство между волокнами HEPA фильтра значительно больше 0,3 мкм.

Представления о том, что фильтр действует как сито, где частицы меньшие, чем крупнейшие отверстия могут пройти через фильтр, неверны для HEPA-фильтров. Эффект сита справедлив и для HEPA-фильтров, однако играет негативную роль, приводя к преждевременному загрязнению, уменьшению скорости фильтрования и даже к выходу из строя фильтра. Несмотря на крайнюю нежелательность этого эффекта, избавиться от него практически невозможно.

HEPA-фильтры рассчитаны на фильтрацию небольших частиц. Эти частицы улавливаются волокнами при помощи следующих механизмов[3]:

  1. Эффект зацепления проявляется если линия тока воздуха проходит близко (на расстоянии порядка толщины волокна или ближе) к фильтровальному волокну. Частицы прилипают к волокнам.
  2. Эффект инерции проявляется для крупных частиц. Благодаря большой инерции частицы большого диаметра не способны огибать волокна, следуя по искривлённой траектории в потоке воздуха, и задерживаются в одном из них. Поэтому они продолжают прямолинейное движение до непосредственного столкновения с препятствием. Этот эффект увеличивается с уменьшением пространства между волокнами и увеличением скорости воздушного потока.
  3. Эффект диффузии представляет собой столкновение мельчайших частиц загрязнений, с диаметром меньше 0,1 мкм, с частицами газа с последующим замедлением первых при прохождении через фильтр. Такие частицы начинают совершать движения в стороны от линий воздушного потока на расстояния, превышающие их диаметр. Такое поведение подобно броуновскому движению и увеличивает вероятность того, что частица остановится окончательно под действием одного из вышеуказанных механизмов. При низких скоростях воздушного потока этот механизм становится доминирующим.
  • Электростатическое прилипание происходит если частица и волокно заряжены противоположно. Поскольку удельная сила этого притяжения определяется отношением заряда к массе частицы, оно становится более эффективным для малых частиц.

Диффузионный механизм преобладает при фильтрации частиц с диаметрами меньше 0,1 мкм. Зацепление и инерция преобладают для частиц более 0,4 мкм в диаметре. Частицы размером порядка 0,2—0,3 мкм фильтруются не столь эффективно, они называются Most Penetrating Particle Size (MPPS). Класс фильтра определяется именно по MPPS.

Примечания

  1. «Наука и жизнь» 2007 № 7, стр 97
  2. Европейский стандарт EN 1822-1; англ. List of EN standards
  3. Общие сведения.