Пластиковая электроника

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Под пластиковой или органической электроникой обычно понимают электронные компоненты, основой для создания которых являются полимеры, являющиеся полупроводниками в светодиодах и полностью замещающие кремний в микросхемах.

История

В 2000 году Алану Макдиармиду из Пенсильванского университета, Алану Хигеру из Калифорнийского университета в Санта-Барбаре и Хидэки Сиракаве из Цукубского университета[англ.] была присуждена Нобелевская премия по химии за то, что им впервые удалось превратить пластмассу в электрический проводник. Это открытие и результаты других исследований электрических свойств органических материалов открыли путь к новой электронике, основанной на органических материалах.

В 2004 году была создана пластмасса «Олиготрон» (Oligotron) американской компанией TDA Research по контракту с американским Национальным научным фондом. От прежних образчиков так называемой органической электроники новый материал отличается нерастворимостью в воде.

До «Олиготрона» лучшим выбором основы для разнообразной органической электроники, такой как органические светодиоды, был растворимый в воде Pedot (полиэтилендиокситиофен[англ.]).

Позже Polymer Vision, «инкубатор технологий» Philips, изготовила дисплей с диагональю 5 дюймов и радиусом кривизны 2 см.

Параллельно с Philips и прочими ведущими компаниями исследованиями занимались молодые фирмы, среди которых Cambridge Display Technologies[англ.] (CDT) и Plastic Logic[англ.] — две научно-исследовательские компании, базирующиеся в Кавендишской лаборатории Кембриджского университета.

CDT сумела создать светодиоды, основанные на полиэлектролитах (PLED, которые являются подгруппой органических светодиодов OLED), которые могут быть нанесены на пригодную к формовке и даже гибкую основу, к примеру — листы ПЭТ.

Plastic Logic изначально специализировалась на использовании экзотических полимеров (полупроводников и проводников) и металлов в тонкопленочных транзисторах (TFT), что применяются в активных матричных соединительных платах, при помощи которых осуществляется контроль за дисплеями и выполняются прочие функции.

В настоящее время Plastic Logic является крупнейшей фирмой, производящей исследования в области развития пластиковой электроники и одна из немногих в мире компаний, разрабатывающая технологию полимерных соединительных плат.

Для создания пластиковой электроники применяется несколько различных типов полимеров, проводящих и полупроводящих. Plastic Logic пользуется услугами ряда поставщиков, в первую очередь Dow Chemical, которая производит полиэтилендиокси-тиофен/полистролсульфоновую кислоту (PDOT/PSS) и полидиоктилфтор-кобитиофен (F8T2).

Plastic Logic заключила соглашение о взаимном обмене лицензиями с фирмой Epson. Siemens создала совместное предприятие с печатной компанией Kurz. Несколько ведущих химических компаний также вовлечены в это движение.

В январе 2011 года компания Роснано инвестировала в компанию Plastic Logic $150 млн и был заключен договор о создании завода по производству пластиковой электроники нового поколения в Зеленограде.

Недостатки

Органические материалы по многим параметрам уступают традиционным. Современные техпроцессы позволяют производить из кремния многослойные схемы чрезвычайно высокой концентрации (вплоть до технологических норм 18 нм). Высокое число свободных носителей в кремнии и их низкая эффективная масса (по сравнению с доступными полимерами) позволяют компонентам кремниевых микросхем работать на высоких частотах, вплоть до терагерца (в логических схемах). Ещё более высокие частоты достижимы при применении арсенида галлия.

Соединения в традиционных техпроцессах выполняются алюминием, медью и даже золотом, прекрасными проводниками электричества. Струйные технологии, применяемые в пластиковой электронике, сейчас предполагают применение полимерных соединений или металлосодержащих проводящих паст, заметно уступающих чистому металлу.

Представляется крайне сомнительным, что в обозримом будущем полимерные схемы достигнут характеристик, хоть сколько-нибудь сравнимых с кремниевыми (на вторую половину 2011 года самый быстродействующий пластиковый процессор имеет тактовую частоту в несколько килогерц, что в миллионы раз меньше типичной частоты кремниевых процессоров, а по общей производительности уступает кремниевым аналогам почти в миллиард раз).

Полимерные проводники также быстрее деградируют и менее устойчивы к действию ионизирующих излучений.

Достоинства

Органические материалы, в свою очередь, легче, пластичнее, им проще придавать нужную форму. К тому же, органических материалов можно синтезировать бесконечное множество, заменяя в них отдельные блоки, легко создавая таким образом материалы с заранее заданными свойствами. В качестве иллюстрации можно привести полноцветные дисплеи на органических светодиодах, где зелёный цвет появился через несколько лет после демонстрации черно-жёлтого прототипа; проблема же эффективных неорганических зелёных светодиодов до сих пор так и не решена ввиду сложности формирования полупроводника с необходимой шириной запрещённой зоны. Важнейшим достоинством таких материалов является их низкая цена, в сравнении с кремниевыми аналогами.

Огромное преимущество пластиковой электроники заключается в том, что она может быть изготовлена прямым образом, используя автоматическое проектирование при очень высокой скорости производства. При этом процессе создаются гибкие поверхности большого размера, производимые при помощи струйной печати и не требующие применения сложной фотолитографии и вакуумных систем, которые необходимы для создания транзисторов на основе кристаллического кремния. Струйные технологии легко и дешево перестраиваются (не нужно делать чрезвычайно дорогостоящий набор масок, как для кремния), что чрезвычайно выгодно для малосерийных (тиражом менее десятков тысяч) схем. В принципе, каждая схема может быть уникальной, что немыслимо для традиционной фотолитографии, используемой в «кремниевом» техпроцессе.

Низкие температуры технологических процессов позволяют использовать дешевые подложки и наносить схемы на самый широкий спектр материалов.

Недостатки пластиковых полупроводников (как то — малое быстродействие схем на их основе) для многих применений просто несущественны, в то время как стоимость — решающий параметр. В качестве примеров подобных применений можно назвать RFID-метки, интеллектуальные датчики, «умная упаковка», электронная бумага и дисплеи и т. д.

См. также

Ссылки