Оксид индия-олова

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Оксид индия-​олова
Общие
Традиционные названия смешанный оксид индия-олова; ITO
Хим. формула (In2O3)0,9 - (SnO2)0,1
Физические свойства
Состояние бесцветное твёрдое вещество, в массе - желтоватое
Молярная масса 264,94 г/моль
Плотность 7,12 г/см3 (25 °C) [1]
Химические свойства
Растворимость
 • в воде нерастворим
Классификация
Рег. номер CAS 50926-11-9
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид индия-олова (англ. Indium tin oxide или сокращённо ITO) — полупроводниковый материал, прозрачен для видимого света, благодаря большой ширине запрещённой зоны (около 4 eV), но способен отражать ИК излучение. Твёрдый раствор оксидов индия (III) и олова (IV), типично 90 % первого и 10 % второго.

Свойства

Является полупроводником n-типа с проводимостью, сравнимой с металлической, где ионы олова служат донорами электронов. В тонких слоях порядка 200 нм, нанесенный на стекло при температуре около 400 °С демонстрирует высокую прозрачность и имеет поверхностное сопротивление около 6 Ом/□.

Области применения

Благодаря сочетанию высокой прозрачности и проводимости, материал используется в производстве прозрачных электродов жидкокристаллических экранов, органических светодиодов (по-английски OLED — Organic Light Emitting Diode) и сенсорных экранов (Touchscreen). Находит также применение в тонкослойных фотопреобразователях и для создания прозрачных электродов в полупроводниковых фотоприёмниках. Инфракрасные лучи ITO отражает подобно металлическому зеркалу, что даёт возможность использовать его в теплозащите. Может использоваться для создания проводящих покрытий на других материалах, что защищает от электростатических зарядов.

Используемые методы нанесения

Оксид индия-олова наносят различными методами, в зависимости от нужной прозрачности и материала подложки. При нанесении на стекло используется метод напыления в высоком вакууме, но при этом подложка, на которую наносят прозрачные электроды, может нагреваться до 400 °С. Это неприемлемо для большинства термопластичных материалов. Также, сообщается о получении газовых сенсоров на основе ITO для детектирования газа CO с помощью плоттерной печати[2].

Конкурирующие материалы

Главным недостатком оксида индия-олова является его дороговизна (в связи с высоким спросом, цена индия превышала 750 долларов за килограмм), поэтому предлагались другие материалы для прозрачных электродов:

  • Оксид цинка, легированный индием (ZnO-In2O3)[3]
  • Оксид алюминия-цинка (AZO)
  • Оксид олова, легированный фтором (FTO)
  • Оксид олова, легированный сурьмой
  • Графен [4]
  • Проводящие полимеры (в т.ч. PEDOT)
  • Оксид индия, легированный фтором (IFO)
  • Оксид индия, легированный цинком (IZO)
  • Ванадат стронция [5]
  • Ванадат кальция [5]

Ссылки

  1. Gunar Kaune: Röntgenografische Charakterisierung von Indium-Zinn-Oxid-Dünnschichten. (PDF; 4,4 MB) Архивная копия от 14 февраля 2006 на Wayback Machine Diplomarbeit an der Technischen Universität Chemnitz, 26. September 2005.
  2. Artem S. Mokrushin, Nikita A. Fisenko, Philipp Yu Gorobtsov, Tatiana L. Simonenko, Oleg V. Glumov. Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor (англ.) // Talanta. — 2021-01-01. — Vol. 221. — P. 121455. — ISSN 0039-9140. — doi:10.1016/j.talanta.2020.121455.
  3. Akhmed Akhmedov, Aslan Abduev, Eldar Murliev, Abil Asvarov, Arsen Muslimov. The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes (англ.) // Materials. — 2021-01. — Vol. 14, iss. 22. — P. 6859. — ISSN 1996-1944. — doi:10.3390/ma14226859. Архивировано 24 марта 2022 года.
  4. Jonathan K. Wasseia et. al. Graphene, a promising transparent conductor Materials Today 13, 52 (2010) doi:10.1016/S1369-7021(10)70034-1
  5. 5,0 5,1 Transparent metal films for smart phone, tablet and TV displays (англ.) ?. phys.org. Дата обращения: 12 июня 2019. Архивировано 21 октября 2018 года.