Миоциты
Мышечная клетка | |
---|---|
![]() |
Миоци́ты (от др.-греч. μῦς — «мышца» + др.-греч. κύτος — «клетка»), или мы́шечные клетки — особый тип клеток, составляющий основную часть мышечной ткани. Миоциты представляют собой длинные, вытянутые клетки, развивающиеся из клеток-предшественников — миобластов[1].
Классификация
Существует несколько типов миоцитов:
- миоциты поперечнополосатой мускулатуры
- гладкой мускулатуры.
Каждый из этих типов обладает особыми свойствами и морфологией. Например, кардиомиоциты, помимо прочего, генерируют электрические импульсы, задающие сердечный ритм (то есть обладают автоматизмом).
Морфология
Необычная микроскопическая анатомия мышечной клетки породила собственную терминологию. Цитоплазмы в клетках мышц называются саркоплазмой, гладкая эндоплазматическая сеть из мышечной клетки называется саркоплазматический ретикулум, а клеточная мембрана в мышечной клетке называется сарколеммой[2]
Терминология
В связи с крайне необычным строением мышечной клетки для её описания цитологами была создана специальная терминология. Каждому из особых терминов, относящихся к мышечной клетке, соответствует аналог, использующийся для описания обычных клеток.
Мышечная клетка | Другие клетки |
саркоплазма | цитоплазма |
саркоплазматический ретикулум | гладкий эндоплазматический ретикулум |
саркосома | митохондрия |
сарколемма | клеточная мембрана, или плазматическая мембрана |
Клетки гладкой мускулатуры
![](https://cdn.xn--h1ajim.xn--p1ai/thumb.php?f=Glatte_Muskelzellen.jpg&width=261)
Гладкомышечные клетки называются так, потому что у них нет ни миофибрилл, ни саркомеров, и, следовательно, нет «полос». Они обнаруживаются в стенках полых органов, включая желудок, кишечник , мочевой пузырь и матку, в стенках кровеносных сосудов, а также в путях дыхательной, мочевыделительной и репродуктивной систем. В глазах цилиарная мышца расширяется и изменяет форму хрусталика. В коже гладкомышечные клетки Волосяного фолликула заставляют волосы встать дыбом в ответ на холод или страх.[3]
Гладкомышечные клетки имеют веретенообразную форму с широкими серединами и сужающимися концами. Они имеют одно ядро и имеют длину от 30 до 200 микрометров. Это многократно короче волокон скелетных мышц. Диаметр также намного меньше, что устраняет необходимость в Т-канальцах, обнаруженных в поперечно-полосатых мышечных клетках. Хотя в гладкомышечных клетках отсутствуют саркомеры и миофибриллы, они содержат большое количество сократительных белков актина и миозина. Нити актина прикреплены плотными телами (подобными Z-дискам в саркомерах) к сарколемме.[3]
Кардиомиоциты
![](https://cdn.xn--h1ajim.xn--p1ai/thumb.php?f=414c_Cardiacmuscle.jpg&width=260)
Сердечная мышца, такая как скелетная мышца, также имеет поперечно-полосатую форму, а клетки содержат миофибриллы, миофиламенты и саркомеры в качестве клеток скелетных мышц. Клеточная мембрана прикреплена к цитоскелету клетки якорными волокнами шириной примерно 10 нм. Обычно они располагаются на Z-линиях, так что образуют бороздки и выходят поперечные канальцы. В сердечных миоцитах это образует зубчатую поверхность[4].
Скелетная поперечнополосатая
![](https://cdn.xn--h1ajim.xn--p1ai/thumb.php?f=Blausen_0801_SkeletalMuscle.png&width=258)
Одна мышца, такая как двуглавая мышца плеча у молодого взрослого мужчины, содержит около 253 000 мышечных волокон[5]. Мышечные волокна скелетной мускулатуры имеют синцитиальное происхождение из отдельных клеток миобластов, сливающихся в миотрубочки во время миогенеза[6]. После слияния диаметр волокна —цилиндрического многоядерного образования— поперечнополосатых мышц составляет от 5 до 100 мкм, а длина может достигать нескольких сантиметров и более. Каждое мышечное волокно состоит из расположенных параллельно миофибрилл, состоящих из длинных белковых цепей миофиламентов, которые включают в себя повторяющиеся в продольном направлении блоки — саркомеры, отделенные друг от друга Z-пластинками. Существует три типа миофиламентов: тонкие, толстые и эластичные, которые работают вместе, вызывая сокращение мышц[7]. Тонкие миофиламенты состоят в основном из актина, а толстые — из миозина, и они скользят друг по другу, сокращая длину волокна при сокращении мышц. Третий тип миофиламентов — это эластичные волокна, состоящие из очень большого белка титина.
В поперечнополосатой мышечной ткани миозин образует темные нити, которые составляют группу A. Тонкие нити актина являются легкими нитями, которые составляют I группы. Самая маленькая сократительная единица в волокне называется саркомером, которая представляет собой повторяющуюся единицу в пределах двух Z-полос. Саркоплазма также содержит гликоген, который обеспечивает клетку энергией во время интенсивных упражнений, и миоглобин, красный пигмент, который сохраняет кислород до тех пор, пока он не понадобится для мышечной активности[7]
Саркоплазматический ретикулум, специализированный тип гладкой эндоплазматической сети, образует сеть вокруг каждой миофибриллы мышечного волокна. Эта сеть состоит из групп двух расширенных концевых мешочков, называемых терминальными цистернами, и одного Т-канальца (поперечного канальца), который проходит через клетку и выходит на другую сторону; вместе эти три компонента образуют триады, которые существуют в сети саркоплазматического ретикулума, в котором каждый Т-каналец имеет две терминальные цистерны с каждой стороны. Саркоплазматический ретикулум служит резервуаром для ионов кальция, поэтому, когда потенциал действия распространяется по Т-канальцу, он дает сигнал саркоплазматическому ретикулуму высвободить ионы кальция из закрытых мембранных каналов, чтобы стимулировать сокращение мышц.[7][8] В скелетных мышцах на конце каждого мышечного волокна внешний слой сарколеммы соединяется с сухожильными волокнами в мышечно-сухожильном соединении[9][10]
Каждое скелетное мышечное волокно отдельно иннервируется возбуждающим моторным аксоном.[11]
Развитие
Миобласт — это эмбриональная клетка-предшественник, которая дифференцируется, давая начало различным типам мышечных клеток[12]. Дифференцировка регулируется миогенными регуляторными факторами, включая MyoD, Myf5, миогенин и MRF4[13]. GATA4 и GATA6 также играют роль в дифференцировке миоцитов[14].
Скелетные мышечные волокна образуются, когда миобласты сливаются вместе; следовательно, мышечные волокна представляют собой клетки с несколькими ядрами, известными как мионуклеусы, причем каждое клеточное ядро происходит из одного миобласта. Слияние миобластов специфично для скелетных мышц, а не для сердечной мышцы или гладкой мускулатуры.
Миобласты в скелетных мышцах, которые не образуют мышечных волокон, дедифференцируются обратно в миосателлитные клетки. Эти сателлитные клетки остаются смежными со скелетным мышечным волокном, расположенным между сарколеммой и базальной мембраной[15] эндомизия (соединительной тканью, которая разделяет мышечные пучки на отдельные волокна). Чтобы повторно активировать миогенез, необходимо стимулировать клетки-сателлиты для дифференцировки в новые волокна.
Миобласты и их производные, включая сателлитные клетки, теперь могут быть получены in vitro путем направленной дифференцировки плюрипотентных стволовых клеток[16].
Киндлин-2 играет роль в развитии удлинения во время миогенеза[17].
Функция
![](https://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Sliding_Filament_Mechanism_Diagram.pdf/page1-256px-Sliding_Filament_Mechanism_Diagram.pdf.jpg)
При сокращении тонкие и толстые нити скользят друг относительно друга за счет аденозинтрифосфата. Это сближает Z-диски друг с другом в процессе, называемом механизмом скользящей нити. Сокращение всех саркомеров приводит к сокращению всего мышечного волокна. Это сокращение миоцита запускается потенциалом действия над клеточной мембраной миоцита. Потенциал действия использует поперечные канальцы, чтобы попасть с поверхности внутрь миоцита, который непрерывно находится внутри клеточной мембраны. Саркоплазматические ретикулумы представляют собой перепончатые мешки, которые соприкасаются поперечными канальцами, но остаются отдельными от них. Они обертываются вокруг каждого саркомера и наполнены Ca2+[18].
Сокращение сердечной мышцы
Специализированные кардиомиоциты в синоатриальном узле генерируют электрические импульсы, контролирующие частоту сердечных сокращений. Эти электрические импульсы координируют сокращение остальной сердечной мышцы через систему пейсмейкеров сердца. Активность синоатриального узла, в свою очередь, модулируется нервными волокнами как симпатической, так и парасимпатической нервной системы. Эти системы действуют, увеличивая и уменьшая, соответственно, скорость производства электрических импульсов синоатриальным узлом.
Эволюция
Эволюционное происхождение мышечных клеток животных дискуссионно. Согласно одной точке зрения, мышечные клетки эволюционировали один раз, и поэтому все мышечные клетки имеют одного общего предка. Другая точка зрения состоит в том, что мышечные клетки эволюционировали более одного раза, и любое морфологическое или структурное сходство связано с конвергентной эволюцией и генами, предшествовавшими эволюции мышц и даже мезодермы — зародышевого слоя, дающего начало мышечным клеткам позвоночных.
Шмид и Зайпель утверждают, что происхождение мышечных клеток — это монофилетическая черта, которая возникла одновременно с развитием пищеварительной и нервной систем всех животных, и что это происхождение можно проследить до единственного предка многоклеточных животных, в котором присутствуют мышечные клетки. Они утверждают, что молекулярные и морфологические сходства между мышечными клетками у cnidaria и ctenophora достаточно похожи на таковые у bilaterians, чтобы у многоклеточных животных был один предок, от которого произошли мышечные клетки. В этом случае Шмид и Зайпель утверждают, что последним общим предком bilateria, ctenophora и cnidaria был триплобласт или организм с тремя зародышевыми листками, и это, что означает организм с двумя зародышевыми листками, который эволюционировал вторично из-за их «наблюдения» за отсутствием мезодермы или мышц, обнаруживаемых у большинства книдарий и гребневиков. Сравнивая морфологию книдарий и гребневиков с билатериями, Шмид и Зайпель смогли сделать вывод о наличии миобластоподобных структур в щупальцах и кишечнике некоторых видов книдарий, а также в щупальцах гребневиков. Поскольку это уникальная структура мышечных клеток, эти ученые определили на основе данных, собранных их сверстниками, что это маркер поперечно-полосатых мышц, аналогичный тому, который наблюдается у билатерий. Авторы также отмечают, что мышечные клетки, обнаруженные у книдарий и гребневиков, часто являются конкурирующими из-за происхождения этих мышечных клеток, являющихся эктодермой, а не мезодерма или мезендодерма. Другие утверждают, что происхождение настоящих мышечных клеток — это часть энтодермы, мезодермы и энтодерма. Однако Шмид и Зайпель опровергают этот скептицизм относительно того, являются ли мышечные клетки гребневиков и книдарий истинными мышечными клетками, учитывая, что книдарии развиваются через стадию медузы и стадию полипа. Они наблюдают, что на стадии Hydrozoan medusa существует слой клеток, который отделяется от дистальной стороны эктодермы, чтобы сформировать поперечно-полосатые мышечные клетки, что кажется сходным с таковым в мезодерме, и называют этот третий отделенный слой клеток эктокодоном. . Они также утверждают, что не все мышечные клетки происходят из мезендодермы у билатерий, ключевыми примерами являются то, что как в глазных мышцах позвоночных, так и в мышцах спиралиев эти клетки происходят из эктодермальной мезодермы, а не из энтодермальной мезодермы[19].
Эволюционно специализированные формы скелетных и сердечных мышц предшествовали дивергенции эволюционной линии позвоночных / членистоногих[20] Это указывает на то, что эти типы мышц развились у общего предка примерно 700 миллионов лет назад (млн лет назад) . Было обнаружено, что гладкие мышцы позвоночных развивались независимо от типов скелетных и сердечных мышц.
Примечания
- ↑ MeSH Myocytes
- ↑ Saladin, Kenneth S. Human anatomy. — 3rd. — New York : McGraw-Hill, 2011. — P. 244–246. — ISBN 9780071222075.
- ↑ Перейти обратно: 3,0 3,1 (6 March 2013) «Smooth muscle».
- ↑ Ferrari, Roberto Healthy versus sick myocytes: metabolism, structure and function . oxfordjournals.org/en. Oxford University Press. Дата обращения: 12 февраля 2015. Архивировано 19 февраля 2015 года.
- ↑ (July 2003) «Muscle fiber number in the biceps brachii muscle of young and old men.». Muscle & Nerve 28 (1): 62–8. doi:10.1002/mus.10386. PMID 12811774.
- ↑ (August 2018) «With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing.». BMB Reports 51 (8): 378–387. doi:10.5483/bmbrep.2018.51.8.128. PMID 29898810.
- ↑ Перейти обратно: 7,0 7,1 7,2 Saladin, K. Anatomy & Physiology: The Unity of Form and Function. — 6th. — New York : McGraw-Hill, 2012. — P. 403–405. — ISBN 978-0-07-337825-1.
- ↑ (2013) «Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength». PLOS ONE 8 (5): e63658. doi:10.1371/journal.pone.0063658. PMID 23691080. .
- ↑ (April 2012) «The development of the myotendinous junction. A review.». Muscles, Ligaments and Tendons Journal 2 (2): 53–63. PMID 23738275.
- ↑ (1 February 2012) «Building muscle: molecular regulation of myogenesis.». Cold Spring Harbor Perspectives in Biology 4 (2): a008342. doi:10.1101/cshperspect.a008342. PMID 22300977.
- ↑ Роджер Эккерт, Дейвид Рэнделл, Джордж Огастин. Физиология животных. Механизмы и адаптация / под ред. Т.М. Турпаева. — М.: Мир, 1991. — С. 411.
- ↑ page 395, Biology, Fifth Edition, Campbell, 1999
- ↑ (2000) «Molecular mechanisms regulating myogenic determination and differentiation». Front Biosci 5: D750–67. doi:10.2741/Perry. PMID 10966875.
- ↑ (May 2008) «Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice». Dev. Biol. 317 (2): 614–9. doi:10.1016/j.ydbio.2008.03.013. PMID 18400219.
- ↑ (November 2006) «The skeletal muscle satellite cell: the stem cell that came in from the cold.». Journal of Histochemistry and Cytochemistry 54 (11): 1177–91. doi:10.1369/jhc.6r6995.2006. PMID 16899758.
- ↑ (August 2015) «Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy». Nature Biotechnology 33 (9): 962–9. doi:10.1038/nbt.3297. PMID 26237517. Шаблон:Closed access
- ↑ (2008) «Kindlin-2 is required for myocyte elongation and is essential for myogenesis». BMC Cell Biol. 9: 36. doi:10.1186/1471-2121-9-36. PMID 18611274.
- ↑ Structure and Function of Skeletal Muscles . courses.washington.edu. Дата обращения: 13 февраля 2015. Архивировано 15 февраля 2015 года.
- ↑ (1 June 2005) «Evolution of striated muscle: Jellyfish and the origin of triploblasty». Developmental Biology 282 (1): 14–26. doi:10.1016/j.ydbio.2005.03.032. PMID 15936326.
- ↑ (1999) «Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees». Molecular Biology and Evolution 16 (6): 856–867. doi:10.1093/oxfordjournals.molbev.a026170. ISSN 0737-4038. PMID 10368962.