Карбоксидобактерии

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Карбоксидобактерии — группа аэробных хемолитоавтотрофных бактерий, получающих энергию при окислении угарного газа (СО), объединяемых на основании физиологических особенностей. Не являются таксономической группой. Включают α, β, и γ-протеобактерии, фирмикутов, и актинобактерий. Большинство известных карбоксидобактерий являются грамотрицательными бактериями.

Неожиданно, много видов Mycobacterium, включая Mycobacterium tuberculosis, также могут расти хемолитоавтотрофно, используя СО как источник углерода и энергии. В качестве донора электронов большинство карбоксидобактерий может использовать Н2 вместо СО, при росте на СО2 в качестве источника углерода. Таким образом, они относятся и к группе водородокисляющих бактерий. Pseudomonas carboxydoflava использует нитрат в анаэробных условиях, как акцептор электронов при окислении СО.

Биохимия

Карбоксидобактерии способны к автотрофному росту за счет использования углекислого газа. Фиксация углерода происходит в цикле Кальвина.

Аэробные карбоксидобактери

Окисление СО кислородом происходит в соответствии с реакцией:

СО + 1/2О2 → CO2; ΔG0’=-67,3 ккал/моль (-281,8 кДж/моль)

Ключевым ферментом карбоксидобактерий является СО-дегидрогеназа ((ЕС 1.2.5.3) или СО-дегидрогеназа[англ.] (EC 1.2.2.4)). Эти аэробные ферменты отличается от СО-дегидрогеназы[англ.] анаэробных карбоксидобактерий или СО-дегидрогеназы/ацетил-КоА синтетазы[англ.] (ЕС 1.2.7.4) метаногенов и гомоацетогенов. У метаногенов и ацетогенов —это растворимые белки, катализирующие обратимую реакцию и использующих в качестве коферментов кофермент F420 или ферредоксин). Аэробные СО-дегидрогеназы является мембранными флавинсодержащими белками, содержащие в качестве простетической группы молибденсодержащий бактоптерин[1][2] (молибдоптерин-цитидин-динуклеотид[англ.]) и железосерные кластеры в реакционном центре. Располагается на внутренней стороне цитоплазматической мембраны. Аэробные СО-дегидрогеназы катализируют однонаправленную реакцию

СО + Н2О → СО2 + 2Н++ 2е-

Карбоксидобактерии могут использовать СО эффективно при низких концентрациях СО,за счет большой разности в окислительно-восстановительных потенциалах кофермента Q (0 В) и СО/СО2 (-0,54 В). СО-дегидрогеназа передает электроны от СО в дыхательную цепь на уровне цитохрома b561 или убихинона (кофермент Q). Терминальная оксидаза содержит цитохром о. Перенос двух электронов по дыхательной цепи на кислород в этом случае, приводит к работе только одного пункта генерации водородного потенциала, и сопровождается транслокацией 4 протонов, которые расходуются на синтез АТФ. При использовании водорода, его окисление происходит на уровне цитохрома с, при этом пара электронов передается на терминальную оксидазу с транлокацией через мембрану уже 6 протонов.

Карбоксидобактерии восстанавливают НАДФ+ для реакций биосинтеза, через обратный транспорт электронов по электрон-транспортной цепи. Таким образом, часть энергии тратится на восстановление НАДФ+, и окисление СО является неэффективным способом получения энергии. Карбоксидобактерии вынуждены окислять большое количество СО. Окисление, приблизительно, 6 молекул СО до СО2, обеспечивает энергию, необходимую восстановительной фиксации одной молекулы СО2.

Компоненты дыхательной цепи карбоксидобактерий являются устойчивыми к высоким концентрациям СО, хотя СО относится к дыхательным ядам и является ингибитором терминальных оксидаз, таких как цитохромы типа а.

Карбоксодобактерии являются факультативными хемолитоавтотрофами. То есть они могут использовать дополнительно органические субстраты в качестве основного или дополнительного источника углерода и энергии. Карбоксидобактерии содержат разветвленную на уровне цитохрома b цепь переноса электронов. Органотрофная ветвь содержит цитохромы b558, c и а1.

Анаэробные карбоксидобактерии

Некоторые фототрофные бактерии (пурпурные несерные бактерии (например Rhodocyclus gelatinosus), цианобактерии), а также анаэробная гидрогеногенная карбокситрофная бактерия Carboxydothermus hydrogenoformans[англ.], получают энергию в реакции окисления СО, в которой акцептором электронов служат протоны, содержащиеся в воде:

СО + H2O → CO2 + H2; ΔG0’=-20 кДж/моль

В результате экзергонической реакции энергия ассимилируется в форме протонного градиента. Так как при этом выделяется газообразный водород, то такие бактерии также называются гидрогеногенными. Анаэробный фермент СО-дегидрогеназа[англ.] (ЕС 1.2.7.4) содержит два кофактора — никель и негеминовое железо [3]. Этот мембраносвязанный фермент работает в комплексе с водородобразующей дегидрогеназой (англ. Energy converting hydrogenase, Ech), генерирующей градиент ионов для синтеза АТФ[4].

Карбокситрофные бактерии

Многие бактерии и археи способны усваивать СО в качестве донора электронов или источника углерода. Но эти реакции не связаны с получением энергии. Таких, так называемых, карбокситрофных бактерий или архей не относят, в строгом смысле, к карбоксидобактериям. Например, к ним относятся метаногены, гомоацетогены, аэробные метанотрофные бактерии. У аэробных метанотрофов их метанмонооксигеназа обладает релаксированной субстратной специфичностью.

Некоторые типичные представители

Значение

Измерено, что карбоксидотрофные бактерии поглощают около 2x108 тонн СО из атмосферы ежегодно, поддерживая низкую атмосферную концентрацию этого токсичного газа [5][6]

См. также

Примечания

  1. Dobbek, H., Gremer, L., Meyer, O., Huber, R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. (англ.) // Proc Natl Acad Sci U S A : журнал. — 1999. — Vol. 96, no. 16. — P. 8884-9.
  2. Dobbek, H., Gremer, L., Kiefersauer, R., Huber, R., Meyer, O. Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution. (англ.) // Proc Natl Acad Sci U S A : журнал. — 2002. — Vol. 99, no. 25. — P. 15971-6.
  3. Jeoung, J.-H., Fesseler, J., Goetzl, S., Dobbek, H.  = Carbon monoxide toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases // eds. P.M.H. Kroneck, M.E. Sosa Torres The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. — Dordrecht: Springer, 2014. — С. 37-69.
  4. Hedderich, R., Forzi, L.  = Energy-convertiing [NiFe] hydrogenase: more than just H2 activation // J. Mol. Microbiol. Biotechnol : журнал. — 2004. — № 10. — С. 92-104. — doi:10.1159/000091557.
  5. Conrad, R., Seiler, W. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. (англ.) // Appl Environ Microbiol. : журнал. — 1980. — Vol. 40, no. 3. — P. 437-45.
  6. Conrad, R., Meyer, O., Seiler, W. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. (англ.) // Appl Environ Microbiol. : журнал. — 1981. — Vol. 42, no. 2. — P. 211-5.