Гидрат метана
Гидрат метана (формула CH4·5.75H2O или 4CH4·23H2O), или метангидрат — супрамолекулярное соединение метана с водой, устойчив при низких температурах и повышенных давлениях. Это наиболее широко распространённый в природе газовый гидрат — его запасы оцениваются в 1016 кг, что на два порядка превышает мировые запасы нефти[1].
В 40-е годы советские учёные (Стрижов, Мохнаткин, Черский) высказывали гипотезу о наличии залежей газовых гидратов в зоне многолетней мерзлоты. В 60-е годы были обнаружены первые месторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. Постепенно выяснилось их широкое распространение в океанах и нестабильность при повышении температуры.
Сейчас природные газовые гидраты привлекают к себе особое внимание как возможный источник ископаемого топлива, а также как участник изменений климата (см. Гипотеза о метангидратном ружье).
Свойства гидратов
Газовые гидраты внешне напоминают спрессованный снег, могут гореть, легко распадаются на воду и газ при повышении температуры. Благодаря своей клатратной структуре газовый гидрат объёмом 1 м³ может содержать до 160—180 н.м³ чистого газа. Данный показатель сравним с некоторыми перспективными видами объёмно-детонирующих взрывчатых веществ.
Гидрат метана в природе
Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан, и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.
Фазовая диаграмма и поле устойчивости гидрата метана в морях и на континентах. В море диапазон устойчивости гидрата метана определяется температурой воды в придонном слое и геотермическим градиентом. Температура воды у дна в северных морях составляет +4 °C. Ниже, в осадочных породах она нарастает в соответствии с геотермическим градиентом, при некоторой температуре гидрат метана становится неустойчив и распадается на воду и метан. Аналогичная картина наблюдается на континентах, но глубина распада гидратов на них зависит от глубины развития вечной мерзлоты.
Как следует из фазовой диаграммы гидрата метана, для его образования требуются низкие температуры и относительно высокое давление и чем больше давление, тем выше температура, при которой гидрат метана устойчив. Так, при 0 °C он стабилен при давлении порядка 25 бар и выше. Такое давление достигается, например, в океане на глубине около 250 м. При атмосферном давлении для устойчивости гидрата метана нужна температура около −80 °C. Однако, метангидраты всё же могут довольно долго существовать в условиях низких давлений и при более высокой температуре, но обязательно отрицательной — в этом случае они находятся в метастабильном состоянии, их существование обеспечивает эффект самоконсервации — при разложении метангидраты покрываются ледяной коркой, что мешает дальнейшему разложению.
При увеличении мощности осадков в море и погружении или уменьшении мощности мерзлоты, гидрат метана распадется и на небольшой глубине образуется газовый резервуар, из которого газ может прорваться на поверхность. Такие выбросы действительно наблюдаются в тундре и иногда в морях.
Катастрофический распад гидрата метана считается причиной Поздне-палеоценового термального максимума, геологического события, на границе палеоцена и эоцена, приведшего к вымиранию многих видов животных, изменению климата и седиментации[источник не указан 2588 дней].
Гипотеза о пропаже кораблей в Бермудском треугольнике
Процесс прорыва метана из морских залежей газовых гидратов был привлечён для объяснения исчезновения кораблей в Бермудском треугольнике и некоторых других местах. Гипотеза заключается в том, что при подъёме метана к поверхности вода насыщается пузырьками газа и плотность смеси резко падает, в результате корабль теряет плавучесть и тонет. Есть предположение, что поднявшись в воздух, метан может вызвать также крушение самолётов — например, из-за понижения плотности воздуха, которое приводит к снижению подъёмной силы и искажению показаний альтиметров. Кроме того, метан в воздухе может привести к остановке двигателей или взрыву.
Экспериментальным путём была действительно подтверждена возможность достаточно быстрого (в пределах десятков секунд) затопления судна, оказавшегося на границе выброса газа в случае, если газ выделяется одним пузырём, размер которого больше или равен длине судна. Однако остаётся открытым вопрос о таких выделениях газа. Кроме того, гидрат метана находится и в других местах в мировом океане, где не было зафиксировано массовых случаев пропажи кораблей.
Коммерческая добыча газа из гидратных залежей
В августе 2006 года было объявлено, что китайские бизнесмены инвестируют 800 млн юаней (100 млн долларов) в течение следующих 10 лет для изучения возможности добычи газа из гидратных залежей[2]. Бергенский университет (Норвегия) разработал методику внедрения CO2 в отложения гидратов с последующим извлечением CH4. 12 марта 2013 года ConocoPhillips совместно с Japan Oil, Gas and Metals National Corporation (JOGMEC) объявили об удачном применении данного метода недалеко от Японии[3][4].
В мае 2017 года Япония и Китай объявили о прорыве в вопросе добычи газа из залежей гидрата[5]. Однако консенсус нефтегазовой индустрии заключается в том, что до промышленной добычи гидратов пройдут годы[6].
Гидраты при добыче природного газа
При добыче и транспортировке природного газа в газообразной форме гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляции трубопроводов и подбора режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка — очистка газа от паров воды.
См. также
Примечания
- ↑ Подводное торнадо: микроюбилей открытия . Дата обращения: 23 мая 2019. Архивировано 1 июля 2019 года.
- ↑ Agreements to boost bilateral ties . www.chinadaily.com.cn. Дата обращения: 19 февраля 2018. Архивировано 20 февраля 2018 года.
- ↑ Japan taps gas from methane hydrate (англ.), BBC News (12 March 2013). Архивировано 26 августа 2017 года. Дата обращения 19 февраля 2018.
- ↑ Tabuchi, Hiroko. An Energy Coup for Japan: ‘Flammable Ice’ (англ.), The New York Times (12 March 2013). Архивировано 1 октября 2019 года. Дата обращения 19 февраля 2018.
- ↑ China claims breakthrough in 'flammable ice' (англ.), BBC News (19 May 2017). Архивировано 29 января 2018 года. Дата обращения 19 февраля 2018.
- ↑ China and Japan find way to extract ‘combustible ice’ from seafloor, harnessing a legendary frozen fossil fuel (англ.), National Post (19 May 2017). Дата обращения 19 февраля 2018.
Литература
- Дж. Кэрролл. Гидраты природного газа. — Технопресс, 2007. — 316 с.
- Pedchenko M.M. The formation of hydrates hydrocarbon gases – Poltava, 2014. – 182 p. (Ukrainian)
Ссылки
- О возможном разрушении части мировых запасов метановых газогидратов и учёте некоторых обратных связей при прогнозировании климатических изменений Олег Иващенко
- Газовые гидраты Дядин Ю. А., Гущин А. Л. Соросовский образовательный журнал, 1998
- Where are Natural Methane Hydrates Found?
В статье есть список источников, но не хватает сносок. |