Галогеноводороды

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Галогеноводоро́ды — общее название соединений, образованных из водорода и галогенов (элементов подгруппы фтора):

Все галогеноводороды — бесцветные ядовитые газы с резким запахом, хорошо растворимые в воде. На воздухе их концентрированные растворы дымят вследствие выделения галогеноводородов.

Сокращённо галогеноводороды обозначают НГ, а в источниках на языках, использующих латинский алфавит, — HHal.

Соединение Формула Модель Молярная масса Длина связи
d(H−X)/pm (газ)
Дипольный момент
μ/D
ΔG°f tплав
°C
tкип
°C
Фтороводород
HF
20
91,7
1,86
−270,7
−83,4
19,5
Хлороводород
HCl
36,5
127,4
1,11
−92,3
−114,2
−85,1
Бромоводород
HBr
81
141,4
0,79
−36,3
−86,9
−66,8
Иодоводород
HI
128
160,9
0,38
26,57
−50,8
−35,4
Астатоводород
HAt
211
172,0
-0,06
−26,5
−20,0

В ряду HCl — HBr — HI в соответствии с увеличением ковалентности связи уменьшается дипольный момент молекулы: соответственно 0,33 ⋅10−29, 0,26⋅10−29 и 0,19⋅10−29 Кл·м. В жидкой и газовой фазах молекулы HCl, HBr, HI, в отличие от HF, не ассоциированы. Прочность связи в ряду HCl — HBr — HI значительно уменьшается, поскольку уменьшается степень перекрывания взаимодействующих электронных облаков. Также уменьшается и их устойчивость к нагреванию.

В ряду HCl — HBr — HI закономерно изменяются температуры плавления и кипения, но при переходе к HF они резко возрастают. Это объясняется ассоциацией молекул фтороводорода в результате образования водородных связей.

Химические свойства

Галогеноводороды хлора, брома, йода при обычных условиях — газы. Хорошо растворимы в воде, при растворении протекают следующие процессы:

[math]\displaystyle{ \mathsf{HHal + H_2O \rightarrow H_3O^+ + Hal^-} }[/math]

Процесс растворения сильно экзотермичен. С водой HCl, HBr и HI образуют азеотропные смеси, которые содержат соответственно 20,24; 48; 57 % НГ.

Галогены в галогеноводородах имеют степень окисления −1. Могут выступать в качестве восстановителей, причём восстановительная способность в ряду HCl — HBr — HI увеличивается:

[math]\displaystyle{ \mathsf{HF + H_2SO_4 \nrightarrow} }[/math]
[math]\displaystyle{ \mathsf{HCl + H_2SO_4 \nrightarrow} }[/math]
[math]\displaystyle{ \mathsf{2HBr + H_2SO_4 \rightarrow Br_2 + SO_2 + 2H_2O} }[/math]
[math]\displaystyle{ \mathsf{8HI + H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O} }[/math]

Иодоводород является сильным восстановителем и используется как восстановитель во многих органических синтезах. При стоянии раствор HI вследствие постепенного окисления HI кислородом воздуха и выделения иода постепенно принимает бурую окраску:

[math]\displaystyle{ \mathsf{4HI + O_2 \rightarrow 2H_2O + 2I_2} }[/math]

Аналогичный процесс протекает и в водном растворе HBr, но намного медленнее.

Растворы галогенов — сильные кислоты, в которых ион H+ выступает в качестве окислителя. Сила кислот увеличивается по мере увеличения номера периода. Галогеноводородные кислоты реагируют с металлами, потенциал которых < 0, но так как ионы I (в меньшей степени Br) хорошие комплексообразователи, HI может реагировать даже с серебром (E0 = +0,8 В).

[math]\displaystyle{ \mathsf{2Ag + 4HI \rightarrow 2H[AgI_2] + H_2} }[/math]

Фтороводород легко образует полимеры типа (HF)n

Методы получения

Вытеснение из солей сильными кислотами:

[math]\displaystyle{ \mathsf{NaCl + H_2SO_4 \rightarrow HCl + NaHSO_4} }[/math]
[math]\displaystyle{ \mathsf{H_2 + Cl_2 \rightarrow 2HCl} }[/math]
[math]\displaystyle{ \mathsf{H_2 + Br_2 \rightarrow 2HBr} }[/math]
[math]\displaystyle{ \mathsf{H_2 + I_2 \rightarrow 2HI} }[/math]

Хлор реагирует с водородом бурно, со взрывом, но реакцию необходимо инициировать (путём нагревания или освещения), что связано с её цепным механизмом.

Взаимодействие водорода с бромом и иодом также включает цепные процессы, но реакция с бромом протекает медленно, а с иодом идёт лишь при нагревании и не доходит до конца, поскольку в системе устанавливается равновесие. Этой закономерности соответствует и изменение ΔH°f.

Литература

  • Ахметов Н. С. «Общая и неорганическая химия» М.: Высшая школа, 2001
  • Карапетьянц М. Х., Дракин С. И. «Общая и неорганическая химия» М.: Химия 1994