Примечание: По техническим причинам миниатюры подобных GIF-изображений высокого разрешения не анимируются.
Этот файл из на Викискладе и может использоваться в других проектах.
Информация с его страницы описания приведена ниже.
Краткое описание
ОписаниеJSr07885.gif
Русский: Анимация множества Жюлиа для квадратичного полинома fc(z)=z^2+C. Значения C для каждого кадра вычисляются по формуле: C=r*cos(a)+i*r*sin(a), где: a=(0..2*Pi), r=0,7885. Таким образом, параметр С описывает круг с радиусом r=0,7885 и центром в начале координат комплексной плоскости.
Смоделировано в Matlab R2011b используя алгоритм escape-time: A=10e6, max_iter=81. Цветовая схема - зеркалированный jet(40).
Українська: Анімація множини Жюліа для квадратичного полінома fc(z)=z^2+C. Значення C для кожного кадру обчислюються за формулою: C=r*cos(a)+i*r*sin(a), де: a=(0..2*Pi), r=0,7885. Таким чином, параметр С описує коло з радіусом r=0,7885 та центром в початку координат комплексної площини.
Змодельовано в Matlab R2011b за алгоритмом escape-time: A=10e6, max_iter=81. Кольорова схема - зеркальований jet(40).
English: The animation of the Julia set for the complex quadratic polinomial fc(z)=z^2+C. Values of C for each frame evaluates by equation: C=r*cos(a)+i*r*sin(a), where: a=(0..2*Pi), r=0.7885. Thus, parameter С outlines circle with a radius r=0.7885 and a center at origin of the complex plane.
Created in Matlab R2011b using escape-time algorithm:A=10e6, max_iter=81. Colormap - mirorred jet(40).
Polski: Animacja zbioru Julii dla wielomianu kwadratowego zmiennej zespolonej. Wartości dla każdej ramki są obliczane ze wzoru , gdzie , . A zatem, parametr opisuje okrąg o promieniu i środku w początku płaszczyzny zespolonej.
Stworzono w Matlabie R2011b przy użyciu algorytmu escape-time: A=10e6, max_iter=81. Mapa kolorów – odwrócony jet(40).
делиться произведением – копировать, распространять и передавать данное произведение
создавать производные – переделывать данное произведение
При соблюдении следующих условий:
атрибуция – Вы должны указать авторство, предоставить ссылку на лицензию и указать, внёс ли автор какие-либо изменения. Это можно сделать любым разумным способом, но не создавая впечатление, что лицензиат поддерживает вас или использование вами данного произведения.
распространение на тех же условиях – Если вы изменяете, преобразуете или создаёте иное произведение на основе данного, то обязаны использовать лицензию исходного произведения или лицензию, совместимую с исходной.