Солнечный парус

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Солнечный парус шириной 20 метров, разработанный в НАСА
Толщина солнечного паруса

Со́лнечный па́рус (также называемый световым парусом или фотонным парусом) — приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.

Следует различать понятия «солнечный свет» (поток фотонов, именно он используется солнечным парусом) и «солнечный ветер» (поток элементарных частиц и ионов, который используется для полётов на электрическом парусе — другой разновидности космического паруса).

Идея полётов в космосе с использованием солнечного паруса возникла в 1920-е годы в России и принадлежит одному из пионеров ракетостроения Фридриху Цандеру, исходившему из того, что частицы солнечного света — фотоны — имеют импульс и передают его любой освещаемой поверхности, создавая давление. Величину давления солнечного света впервые измерил русский физик Пётр Лебедев в 1900 году.

Давление солнечного света относительно мало (на Земной орбите — около 9·10−6 Н/м2) и уменьшается пропорционально квадрату расстояния от Солнца[1]. Например, общая сила, действующая на солнечный парус 800 на 800 метров, составляет около 5 ньютонов на расстоянии Земли от Солнца.[2] Солнечный парус может действовать в течение почти неограниченного периода времени, и совсем не требует расхода рабочего тела, и поэтому в некоторых случаях его использование может быть предпочтительно. Однако до настоящего времени ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя по причине крайне низкой тяги.

Физика явления

Предположим, что на неподвижное плоское идеальное зеркало массы [math]\displaystyle{ m }[/math] нормально к его поверхности падает плоская световая волна с энергией [math]\displaystyle{ W_{0} }[/math]. Обозначим энергию отражённой световой волны как [math]\displaystyle{ W_{1} }[/math], скорость, приобретённую зеркалом в результате отражения волны как [math]\displaystyle{ v }[/math]. Тогда закон сохранения энергии: [math]\displaystyle{ W_{0}+mc^{2}=W_{1}+\frac{mc^{2}}{\sqrt{1-\frac{v^2}{c^2}}} }[/math] и закон сохранения импульса: [math]\displaystyle{ \frac{W_{0}}{c}=-\frac{W_{1}}{c}+\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}} }[/math]. Из этих уравнений можно получить:

[math]\displaystyle{ v=c\frac{(1+\frac{2W_{0}}{mc^{2}})^{2}-1}{(1+\frac{2W_{0}}{mc^{2}})^{2}+1} }[/math] (1)
[math]\displaystyle{ W_{1}=\frac{W_{0}}{1+\frac{2W_{0}}{mc^{2}}} }[/math] (2)

Отсюда следует, что коэффициент полезного действия фотонного паруса (доля энергии падающей волны, передаваемая парусу) тем больше, чем больше отношение энергии падающей волны к энергии покоя паруса. При энергии падающей волны, много большей энергии покоя зеркала [math]\displaystyle{ W_{0} \gg m c^{2} }[/math] практически вся энергия волны передаётся зеркалу.

В другом крайнем случае энергия падающей волны много меньше энергии покоя зеркала [math]\displaystyle{ W_{0} \ll mc^{2} }[/math]. В этом случае из формулы (1) получаем: [math]\displaystyle{ \frac{v}{c} \approx \frac{2 W_{0}}{mc^{2}} }[/math]. Из формулы (2) получаем:[math]\displaystyle{ \frac{\Delta W}{W_{0}} = \frac{W_{0}-W_{1}}{W_{0}} \approx \frac{2 W_{0}}{mc^{2}} }[/math]. Из этой формулы видно, что в этом случае световая волна передаёт парусу лишь ничтожную часть своей энергии[3].

Солнечный парус в проектах звездолётов

Солнечный парус на аппарате Космос 1 (модель)

Солнечный парус и другие виды космического паруса планируется использовать в некоторых проектах звездолётов[4][5][6][7][8][9][10]. Преимуществом солнечного парусника является отсутствие топлива на борту, что позволяет увеличить полезную нагрузку по сравнению с космическим кораблём на реактивном движении. Однако концепция солнечного паруса требует лёгкого по массе и одновременно большого по площади паруса.

Недостатком солнечного парусника является зависимость ускорения от расстояния до Солнца: чем дальше от Солнца, тем меньше давление солнечного света и, тем самым, меньше ускорение паруса, а за пределами Солнечной системы давление солнечного света и, соответственно, эффективность солнечного паруса приблизится к нулю. Световое давление от Солнца довольно мало, поэтому для увеличения ускорения существуют проекты разгона солнечного парусника лазерными установками с генерирующих станций вне Земли[4][11]. Данные проекты сталкиваются с проблемой точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Джеффри Ландис  (англ.) предложил использовать солнечную батарею для передачи энергии через лазер от базовой станции на межзвёздный зонд с ионным двигателем[12][13], что даёт некоторое преимущество по сравнению с чисто космическим парусом (в настоящее время данный проект неосуществим из-за технических ограничений)[14].

Конфигурации паруса

Космическая регата

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс о выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к Марсу. Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА, и получил первую премию конкурса[15].

Космические аппараты, использующие солнечный парус

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса[16][17]. Первое развёртывание солнечного паруса в космосе было произведено на российском корабле «Прогресс М-15» 24 февраля 1993 года в рамках проекта «Знамя-2»[18].

Знамя-2 после успешного развёртывания

Первым использовавшим космический парус как двигатель аппаратом стал японский IKAROS, который и считается первым в истории космическим парусником[источник не указан 2402 дня]. 21 мая 2010 года Японское космическое агентство (JAXA) запустило ракету-носитель H-IIA, на борту которой находились космический аппарат IKAROS с солнечным парусом и метеорологический аппарат для изучения атмосферы Венеры[19]. IKAROS оснащён парусом из тончайшей мембраны размером 14 на 14 метров по длине и ширине. С его помощью предполагается исследовать особенности движения аппаратов при помощи солнечного света. На создание аппарата было потрачено 16 миллионов долларов. Раскрытие солнечного паруса началось 3 июня 2010 года, а 10 июня успешно завершилось. По кадрам, переданным с борта IKAROS, можно сделать вывод, что все 196 квадратных метров ультратонкого полотна расправились успешно, а тонкоплёночные солнечные батареи начали вырабатывать энергию.

Сейчас в России существует консорциум «Космическая регата», который провёл несколько опытов с солнечными отражателями с целью освещения районов нефте- и газодобычи. Также существуют проекты выплавления зеркал на орбите из астероидов.

20 мая 2015 года с космодрома на мысе Канаверал первый в истории частный спутник на солнечном парусе «LightSail-1» был отправлен в тестовый полёт[20][21].

В конце декабря 2022 года космический парус ADEO (Drag Augmentation Deorbiting System) площадью 3,6 м² был впервые развёрнут из кубсата формата 1U (10x10x10 см)[22]

В культуре

  • Рассказ «Солнечный ветер[en]» (1963) писателя-фантаста Артура Чарльза Кларка, вошедший в сборник рассказов «Обмен Разумов»[23], целиком посвящён космической регате яхт, оснащенных солнечным парусом и приводимых в движение исключительно солнечным ветром. В рассказе, написанном от имени одного из участвующих в регате капитанов, перечислены яхты с различными вариантами исполнения солнечного паруса и средств стабилизации полёта. В рассказе также описывается инцидент, в ходе которого произошло столкновение двух яхт.
  • В книге Бернара Вербера «Звёздная бабочка» повествование идёт о фантастическом космическом корабле в форме бабочки с использованием фотонного паруса.
  • В сериале «Звёздный путь. Дальний космос 9» (s03e22 Explorers) коммандер Бенджамин Сиско строит корабль с солнечными парусами, чтобы доказать правдивость истории о древнем контакте баджорцев с кардассианской цивилизацией
  • В фильме «Звёздные войны: Эпизод II: Атака клонов» после битвы на Джеонозисе граф Дуку улетает на Корусант на солнечном паруснике.
  • В анимационном фильме студии Disney «Планета Сокровищ» на сёрфере, корабле и шлюпке установлены солнечные паруса, как и на других судах которые можно увидеть в порту. В игре по мотивам фильма так же присутствуют суда, использующие солнечные паруса.
  • Во вселенной Warhammer 40000 солнечными парусами оснащены корабли расы эльдар.
  • Одна из серий мультсерий Смешарики: Пин-код (спин-оффа мультсериала Смешарики), а именно - двадцатая серия "Солнечный бриз" - посвящена теме солнечного паруса
  • В третьем сезоне сериала «Ради Всего Человечества» американский пилотируемый марсианский корабль «Соджернер-1» оснащён, помимо ядерных двигателей, солнечными парусами.

См. также

Примечания

  1. A. Bolonkin. High Speed AB-Solar Sail (англ.). — 2007. — arXiv:physics/0701073.
  2. Jerome Wright (1992), Space Sailing, Gordon and Breach Science Publishers 
  3. Бутиков Е. И., Быков А. А., Кондратьев А. С. Физика в примерах и задачах // М.: Наука. — 1989. — С. 443. — ISBN 5-02-014057-0
  4. 4,0 4,1 Форвард: Путешествие к звездам на энергетическом луче. Дата обращения: 27 сентября 2017. Архивировано 6 ноября 2017 года.
  5. Роберт Л. Форвард К звездам на острие луча. Дата обращения: 14 ноября 2017. Архивировано 6 ноября 2017 года.
  6. Ч. Дэнфорт Под парусом в протонном ветре. Дата обращения: 13 ноября 2017. Архивировано 31 октября 2017 года.
  7. Jones, E. A Manned Interstellar Vessel Using Microwave Propulsion: A Dysonship (англ.) // Journal of the British Interplanetary Society. — 1985. — Vol. 38. — P. 270−273. Архивировано 15 ноября 2017 года.
  8. Грегори Мэтлофф, Юджин Малов. Звездолеты на солнечных парусах: клипера галактики. Дата обращения: 13 ноября 2017. Архивировано 7 января 2018 года.
  9. Ден Спиз, Роберт Зубрин. Ультратонкие солнечные паруса для межзвездного путешествия. Дата обращения: 13 ноября 2017. Архивировано 15 ноября 2017 года.
  10. Interstellar Migration and the Human Experience Paperback — January 1, 1985 by Ben R Finney (Author), Eric M Jones (Author). Дата обращения: 14 ноября 2017. Архивировано 4 апреля 2016 года.
  11. Лэндис: Малый межзвездный зонд, разгоняемый лазером. go2starss.narod.ru. Дата обращения: 27 сентября 2017. Архивировано 16 октября 2017 года.
  12. Laser-Powered Interstellar Probe. scholar.google.ru. Дата обращения: 27 сентября 2017.
  13. Geoffrey A. Landis. Laser-powered Interstellar Probe Архивировано 22 июля 2012 года. on the Geoffrey A. Landis: Science. papers available on the web Архивная копия от 15 сентября 2013 на Wayback Machine
  14. Лендис. Межзвездный ионный зонд, снабжаемый энергией по лазерному лучу. go2starss.narod.ru. Дата обращения: 27 сентября 2017. Архивировано 27 сентября 2017 года.
  15. Нина БАВИНА. Космоса тогда не было…. Дата обращения: 25 мая 2011. Архивировано 13 октября 2011 года.
  16. Гурко О. В., Слабкий Л. И. Использование силовых влияний гравитационного и светового полей Солнца для ориентации космических аппаратов — В кн: «Искусственные спутники земли», вып. 16 — М. : Из-во АН СССР, 1963, 34-45.. Дата обращения: 3 октября 2017. Архивировано 27 мая 2022 года.
  17. Поляхова Е. Н. «Космический полёт солнечным парусом: проблемы и перспективы», М., Изд. «Наука», Глав. ред. физ-мат. литературы, 1986 г. 304 л.
  18. Гудилин В. Е., Слабкий Л. И. Космические грузовые корабли «Прогресс», «Прогресс-М» и их модификации // Ракетно-космические системы (История. Развитие. Перспективы). — М., 1996. — 326 с. Архивная копия от 10 декабря 2012 на Wayback Machine
  19. Сайт проекта «ИКАРОС» Архивная копия от 22 июля 2010 на Wayback Machine (англ.)
  20. Blastoff! X-37B Space Plane and LightSail Solar Sail Go Into Orbit (англ.), NBC News. Архивировано 28 сентября 2017 года. Дата обращения 27 сентября 2017.
  21. Королёв Владимир. На всех парусах. nplus1.ru (22 мая 2015). Дата обращения: 30 мая 2015. Архивировано 19 июня 2015 года.
  22. Космический парус ADEO успешно прошел испытания // AstroNews, 2 февраля 2023.
  23. С Земли на небеса // Обмен разумов / Михаил Гребенюк. — Ташкент: Ёш гвардия, 1989. — С. 238—256. — 464 с. — 400 000 экз. — ISBN 5-633-00221-0.

Литература

  • Эльясберг П. Е. Введение в теорию полёта искусственных спутников Земли. — М., 1965.

Ссылки