Астрономическая единица

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Астрономическая единица
Файл:А.е.
Схематическое изображение орбит планет земной группы: белым отрезком обозначена дистанция от Солнца до Земли, соответствующая 1 астрономической единицеСхематическое изображение орбит планет земной группы: белым отрезком обозначена дистанция от Солнца до Земли, соответствующая 1 астрономической единице
Величина длина
Система астрономическая, принята к применению совместно с СИ
Тип основная

Астрономи́ческая едини́ца (русское обозначение: а.е.[1][2][3]; международное: с 2012 года — au[4][5]; ранее использовалось обозначение ua[6][2]) — единица измерения расстояний в астрономии, примерно равная среднему расстоянию от Земли до Солнца. В настоящее время принята равной в точности 149 597 870 700 метрам[7].

Астрономическая единица применяется в основном для измерения расстояний между объектами Солнечной системы, экзопланетных систем, а также между компонентами двойных звёзд.

Определение

В августе 2012 года 28-я Генеральная ассамблея Международного астрономического союза (МАС) в Пекине приняла решение привязать астрономическую единицу к Международной системе единиц (СИ). С этого времени астрономическая единица считается равной в точности 149 597 870 700 метрам. Кроме того, МАС принял решение стандартизовать международное обозначение астрономической единицы: «au»[7].

Предшествующие определения

Изначально астрономическая единица определялась как длина большой полуоси орбиты Земли или, что то же самое, среднее значение между минимальным (перигелий) и максимальным (афелий) расстояниями от Земли до Солнца. Согласно свойствам эллипса, это значение также является средним расстоянием от точек орбиты Земли до Солнца[8]:126.

В 1976 году 16-я Генеральная ассамблея МАС переопределила астрономическую единицу как единицу расстояния, при которой постоянная Гаусса принимает значение 0,01720209895 (при использовании в качестве единицы времени суток, равных в точности 86 400 секунд СИ; а в качестве единицы массы — массы Солнца, в то время считавшейся равной 1,9891⋅1030 кг)[9]. В таком определении астрономическая единица соответствовала радиусу круговой орбиты пробного тела в изотропных координатах, угловая скорость обращения по которой, при пренебрежении всеми телами Солнечной системы кроме Солнца, в точности равна 0,01720209895 радиана в сутки[10].

В системе постоянных IERS 2003 астрономическая единица полагалась равной 149 597 870 691 м[11]. Эта величина и условное обозначение «ua» были приведены в информационном приложении международного стандарта ISO 80000-3  (англ.) ревизии 2009 года. В ревизии 2019 года этого стандарта астрономическая единица не упомянута[12].

Отношение к Международной системе единиц (СИ)

Астрономическая единица входит в утверждённый Международным бюро мер и весов перечень внесистемных единиц, принятых для использования совместно с единицами СИ[4]. В Российской Федерации использование астрономической единицы допускается в области применения «астрономия» наравне с единицами СИ без ограничения срока. Не допускается употребление астрономической единицы с дольными и кратными приставками СИ[1][2].

История

Первую научную попытку рассчитать астрономические расстояния предпринял создатель гелиоцентрической системы мира Аристарх Самосский в своем трактате «О величинах и расстояниях Солнца и Луны» в III веке до н. э. Тригонометрический метод Аристарха был недостаточно точным, однако на протяжении полутора тысяч лет, с античной древности до эпохи возрождения, это был единственный метод, известный астрономам.

С момента появления кеплеровской небесной механики относительные расстояния в Солнечной системе (исключая слишком близкую Луну) стали известны с хорошей точностью. Поскольку Солнце является центральным телом системы, а обращающаяся по почти круговой орбите Земля — местоположением наблюдателей, естественно было принять радиус этой орбиты за единицу измерения. Однако не существовало способа надёжно измерить величину этой единицы, то есть сравнить её с земными масштабами. Солнце находится слишком далеко, чтобы с Земли надёжно измерить его параллакс. Расстояние до Луны было известно, но исходя из известных в XVII веке данных оценить отношение расстояний до Солнца и Луны не удавалось — наблюдение Луны не даёт требуемой точности, а отношение масс Земли и Солнца также не было известно.

Первым способом уточнения расстояния от Земли до Солнца было уточнение параллакса Солнца путём сравнения его с параллаксом Венеры при прохождении последней по солнечному диску. В 1639 году английский астроном Джереми Хоррокс совместно с Уильямом Крабтри провёл первое в истории наблюдение прохождения Венеры с научными целями и рассчитал расстояние от Земли до Солнца. В современных единицах результат вычислений Хоррокса составил 95,6 млн км и для своего времени был наиболее точным. Записи об этом наблюдении были опубликованы лишь после смерти обоих учёных, в 1661 году, Яном Гевелием[13].

В 1672 году Джованни Кассини совместно со своим сотрудником Жаном Рише измерил параллакс Марса. Поскольку параметры орбит Земли и Марса были известны с высокой точностью, появилась возможность уточнить величину астрономической единицы — в современных единицах у них получилось примерно 140 млн км[14].

Впоследствии величина астрономической единицы неоднократно уточнялась при наблюдении прохождений Венеры по солнечному диску[15]. Наблюдения параллакса астероида Эрос во время сближений его с Землёй в 1901[16] и 1930—1931 годах позволили получить ещё более точную оценку[8].

Астрономическая единица также уточнялась с помощью радиолокации планет. Локацией Венеры в 1961 году установлено, что астрономическая единица равна 149 599 300 ± 2000 км. Повторная радиолокация Венеры в 1962 году позволила уменьшить неопределённость и уточнить значение астрономической единицы как 149 598 100 ± 750 км. Выяснилось, что до локации 1961 года величина астрономической единицы была известна с точностью 0,1 %[источник не указан 4416 дней].

Новейший способ уточнения астрономической единицы основан на наблюдениях за движением автоматических межпланетных станций, элементы орбит которых можно определить с высокой точностью благодаря регулярным сеансам связи с ними[8]:128.

Многолетние измерения расстояния от Земли до Солнца зафиксировали его медленное увеличение со скоростью (15 ± 4) метра за сто лет[17] (что на порядок превышает точность современных измерений). Одной из причин может быть потеря Солнцем массы (вследствие солнечного ветра), однако наблюдаемый эффект значительно превышает расчётные значения[18].

Некоторые расстояния и соотношения

  • Электромагнитное излучение, в том числе видимый свет, проходит 1 астрономическую единицу примерно за 500 секунд (8 минут 20 секунд).
  • Фактическое расстояние от Земли до Солнца не постоянно, в течение года оно варьируется в пределах от 0,9832898912 до 1,0167103335 а.е.
  • Большая полуось орбиты Нептуна, самой далёкой планеты Солнечной системы — около 30,1 а.е.[19]
  • 21 февраля 2019 года был установлен новый рекорд наблюдения наиболее удалённого объекта Солнечной системы. Обнаруженный на снимках с телескопа «Субару» транснептуновый объект получил название FarFarOut. Расстояние до него оценивается в 140 ± 10 а.е.[20]
  • Космический аппарат «Вояджер-1», по состоянию на 2021 год, преодолел расстояние 150 а.е. от Солнца и продолжает удаляться от него со скоростью около 3,6 а.е./год (его текущее удаление отображается здесь Архивная копия от 10 марта 2017 на Wayback Machine). Это самый удалённый от Земли объект, созданный человеком[21].
  • 1 световой год63 241 а.е.
  • 1 парсек206 265 а.е. (переводной коэффициент является иррациональным числом, точно равным количеству угловых секунд в 1 радиане, 180·60·60/π)[22].
  • Расстояние до ближайшей (после Солнца) к нам звезды, Проксимы Центавра, — около 268 400 а.е.[23]

См. также

Примечания

  1. 1,0 1,1 ГОСТ 8.417—2002. Государственная система обеспечения единства измерений. Единицы величин.. Дата обращения: 14 июня 2019. Архивировано 16 июня 2019 года.
  2. 2,0 2,1 2,2 Положение о единицах величин, допускаемых к применению в Российской Федерации. Федеральный информационный фонд по обеспечению единства измерений. Росстандарт. Дата обращения: 21 мая 2017. Архивировано 28 апреля 2021 года.
  3. Статья 5352 Постановление № 879 Об утверждении Положения о единицах величин, допускаемых к применению в Российской Федерации // Собрание законодательства Российской Федерации : бюллетень. — Юридическая литература, 2009. — 9 ноября (№ 45). — С. 13070.
  4. 4,0 4,1 BIPM - SI Brochure, Table 6. www.bipm.org. Дата обращения: 15 апреля 2017. Архивировано 11 ноября 2014 года.
  5. От англ. astronomical unit.
  6. От фр. unité astronomique.
  7. 7,0 7,1 International Astronomical Union, ed. (31 August 2012), RESOLUTION B2 on the re-definition of the astronomical unit of length, RESOLUTION B2, Beijing, China: International Astronomical Union  Архивная копия от 16 августа 2013 на Wayback Machine
  8. 8,0 8,1 8,2 Астрономическая единица / Псковский Ю. П. // Физика космоса: Маленькая энциклопедия / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 126—128. — 70 000 экз.
  9. Resolution No. 10 of the XVIth General Assembly of the International Astronomical Union Архивная копия от 2 мая 2019 на Wayback Machine, Grenoble, 1976
  10. Gareth V. Williams. ASTRONOMICAL UNITAstronomical unit (англ.) // Encyclopedia of Planetary Science. — Dordrecht: Springer Netherlands, 1997. — P. 48–51. — ISBN 978-1-4020-4520-2. — doi:10.1007/1-4020-4520-4_31.
  11. IERS Conventions (2003) Архивировано 4 декабря 2008 года.
  12. ISO 80000-3:2019(en). Quantities and units. Part 3: Space and time. International Organization for Standardization. Дата обращения: 7 мая 2022. Архивировано 17 июня 2016 года.
  13. Paul Marston. Jeremiah Horrocks - young genius and first Venus transit observer (англ.). — University of Central Lancashire, 2004. — P. 14—37.
  14. Еремеева А. И., Цицин Ф. А. История астрономии. — М.: Изд-во МГУ, 1989. — С. 316.
  15. Полозова Н. Г., Румянцева Л. И. 350 лет наблюдениям прохождения Венеры по диску Солнца // Астрономический календарь на 1989 год. — М.: Наука, 1988. — Вып. 92. — С. 244—253.
  16. Hinks, Arthur R. Solar Parallax Papers No. 7: The General Solution from the Photographic Right Ascensions of Eros, at the Opposition of 1900 (англ.) // Month. Not. Roy. Astron. Soc. : journal. — 1909. — Vol. 69, no. 7. — P. 544—567. — Bibcode1909MNRAS..69..544H.
  17. Krasinsky G.A., Brumberg V.A. Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation (англ.) // Celestial Mechanics and Dynamical Astronomy. — Kluwer Academic Publishers, 2004. — Vol. 90, no. 3—4. — P. 267—288. — ISSN 0923-2958. — doi:10.1007/s10569-004-0633-z.
  18. Iorio L. Secular increase of the astronomical unit and perihelion precessions as tests of the Dvali–Gabadadze–Porrati multi-dimensional braneworld scenario (англ.) // Journal of Cosmology and Astroparticle Physics. — 2005. — Vol. 2005, no. 09. — P. 006. — doi:10.1088/1475-7516/2005/09/006. — arXiv:gr-qc/0508047.
  19. Нептун / Ксанфомалити Л. В. // Большая российская энциклопедия [Электронный ресурс]. — 2017.
  20. Nola Taylor Redd. New “FarFarOut” World Is the Most Distant Solar System Object Known (англ.). Scientific American (7 марта 2019). Дата обращения: 23 мая 2019. Архивировано 9 марта 2019 года.
  21. Fast Facts. Voyager - The Interstellar Mission. NASA. Дата обращения: 2 июня 2017. Архивировано 8 октября 2011 года.
  22. Согласно примечанию 4 к резолюции B2 Архивная копия от 28 января 2016 на Wayback Machine XXIX Генеральной ассамблеи Международного астрономического союза (2015 год), парсек определён как в точности [math]\displaystyle{ \frac{648\,000}{\pi} }[/math] а.е. = [math]\displaystyle{ \frac{180\cdot 60\cdot 60}{\pi} }[/math] а.е., то есть совпадает с радиусом окружности, у которой длина дуги, стягивающей угол в 1 угловую секунду, равна 1 астрономической единице. Предыдущее определение парсека как [math]\displaystyle{ 1 \text{а.е.}\cdot\frac{1}{\operatorname{tg}1''} }[/math] основывалось на малом катете прямоугольного треугольника, а не на дуге, и отличалось от современного менее чем на 10−9%. Разница нового и старого определений на много порядков меньше, чем наилучшая доступная для современной техники относительная погрешность измерения межзвёздных расстояний. Поэтому измеренные в парсеках расстояния с изменением определения фактически не изменились.
  23. На основании последних данных телескопа «Gaia» Архивная копия от 3 сентября 2016 на Wayback Machine о параллаксе

Ссылки