Теория полей

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.

История

Коммутативность поля

Первые определения поля не включали в себя требование коммутативности умножения, однако современный термин «поле» всегда подразумевает его коммутативность. Структура, удовлетворяющая всем свойствам поля, кроме коммутативности умножения в российской традиции называется телом. Однако по-немецки поле называют Körper (поэтому буква [math]\displaystyle{ k }[/math] часто употребляется для обозначения поля), а по-французски — corps, что также переводится как «тело».

Приложения теории полей

Понятие поля используется, например, при определении векторного пространства и, следовательно, представляет большую важность для линейной алгебры. Так же и алгебраическое многообразие — основной объект изучения алгебраической геометрии — определяется над произвольным полем. Алгебраическая теория чисел занимается изучением свойств алгебраических числовых полей и их колец целых; и, конечно, использует результаты классической теории полей.

Конечные поля используются в теории чисел и теории кодирования. В частности, поля характеристики 2 полезно рассматривать в информатике.

Некоторые полезные теоремы

См. также

Примечания