Скейн-соотношение

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

Центральный вопрос теории узлов — являются ли две диаграммы отображением одного и того же узла. Один из инструментов, используемых для ответа на этот вопрос — многочлен узла, который является инвариантом узла. Если двум диаграммам отвечают различные многочлены, значит они представляют различные узлы. Обратное не всегда верно.

Скейн-соотношение (или соотношение типа Конвея) часто используют, чтобы простым способом определить многочлен узла. Неформально говоря, скейн-соотношение задаёт линейную связь значений многочлена узла на трёх зацеплениях, которые отличаются друг от друга лишь в малой области. Для некоторых многочленов, таких как полиномы Конвея, Александера и Джонса, подходящего скейн-соотношения достаточно, чтобы вычислить многочлен рекурсивно. Для других, таких как полином HOMFLY, требуются более сложные алгоритмы.

Определение

В скейн-соотношении участвуют три диаграммы зацепления, идентичные всюду, кроме одного перекрёстка. Эти три диаграммы должны выражать три возможности, которые могли бы иметь место на этом перекрёстке: нить может пройти под другой нитью, над ней или не пересечься с ней вовсе. Необходимо рассматривать диаграммы зацеплений, поскольку изменение даже одного перекрёстка может превратить диаграмму узла в диаграмму зацепления и наоборот. В зависимости от конкретного многочлена узла, зацепления, появляющиеся в скейн-соотношении могут быть ориентированы или неориентированы.

Три диаграммы обозначаются следующим образом. Разверните узел так, чтобы направления обеих нитей в рассматриваемом пересечении указывали примерно на север. У одной диаграммы нить северо-западного направления будет проходить над северо-восточной нитью, её обозначим [math]\displaystyle{ L_- }[/math]. У другой диаграммы северо-восточная нить проходит над северо-западной, это [math]\displaystyle{ L_+ }[/math]. Последняя диаграмма лишена этого перекрёстка и обозначается [math]\displaystyle{ L_0 }[/math].

(На самом деле, обозначения не зависят от направления в том смысле, что при замене всех направлений на противоположные, обозначение остаётся прежним. Поэтому многочлены определяются однозначно и на неориентированных узлах. Однако ориентация на зацеплении принципиально важна, чтобы помнить в каком порядке выполнялась рекурсия.)

Полезно мыслить это как составление из одной диаграммы двух других наложением «заплаток» с соответствующими ориентациями.

Чтобы рекурсивно определить многочлен узла (зацепления), фиксируется функция [math]\displaystyle{ F }[/math] и для любой тройки диаграмм и их полиномов, обозначенных, как было указано выше,

[math]\displaystyle{ F\Big(L_-, L_0, L_+\Big)=0 }[/math]

или более аккуратно

[math]\displaystyle{ F\Big(L_-(x), L_0(x), L_+(x), x\Big)=0 }[/math] для каждого [math]\displaystyle{ x }[/math].

(Нахождение функции [math]\displaystyle{ F }[/math], которая делает многочлен независимым от очерёдности пересечений в рекурсии — непростая задача.)

Более формально, скейн-соотношение можно рассматривать, как определение ядра фактор-отображения из плоской алгебры сплетений. Такое отображение соответствует многочлену узла, если все замкнутые диаграммы отображать в сложные виды пустых диаграмм.

Ссылки