Независимые одинаково распределённые случайные величины

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис

В теории вероятностей и статистике, о наборе случайных величин говорят, что они являются независимыми (и) одинаково распределёнными, если каждая из них имеет такое же распределение, что и другие, и все величины являются независимыми в совокупности. Фраза «независимые одинаково распределённые» часто сокращается аббревиатурой i.i.d. (от англ. independent and identically-distributed), иногда — «н.о.р».

Применения

Предположение о том, что случайные величины являются независимыми и одинаково распределёнными широко используется в теории вероятностей и статистике, так как позволяет сильно упростить теоретические выкладки и доказывать интересные результаты.

Одна из ключевых теорем теории вероятностей — центральная предельная теорема — утверждает, что если [math]\displaystyle{ x_1, x_2, \ldots, x_n }[/math] — последовательность независимых одинаково распределённых случайных величин с конечной дисперсией, то, при стремлении [math]\displaystyle{ n }[/math] к бесконечности, распределение их среднего — случайной величины [math]\displaystyle{ \bar{x} = (x_1 + \ldots + x_n) / n }[/math] сходится к нормальному распределению.

В статистике обычно предполагается, что статистическая выборка является последовательностью i.i.d. реализаций некоторой случайной величины (такая выборка называется простой).